Codeforces Round #829 (Div. 2) 题解

本文详细解析了四道编程竞赛题目,包括技术支持问题、排列优化、非零和构造及阶乘整除问题。针对每一道题,作者提供了思路和解决方案,并给出了具体的代码实现,帮助读者理解解题策略和技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Technical Support

思路:显然如果每个问题都要被回答那么A的个数要大于等于Q的个数,但是每个问题在被提出之前的回答显然不是这个问题的回答,所以A的个数要和当前Q的个数取min保证A记录的都是没有重复回答的。

#include <bits/stdc++.h>//#include<iostream>//#include<string.h>//#include<math.h//#include<algorithm>
#define ll long long
#define db double
#define pii pair<int,int>
#define cf int _;cin>>_;while(_--)
#define de cout<<"---"<<endl;
#define mem(x,v) memset(x,v,sizeof(x))
#define L(x) x&(-x)
#define pb push_back//emplace_back//priority_queue <int,vector<int>,greater<int> > q;
#define INF 0x3f3f3f3f
#define endl '\n'
//function<void(int)> dfs = [&](int u);
//#define x first
//#define y second
using namespace std;
const int mod=998244353;
int n;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
int main(){
	ios::sync_with_stdio(0);cin.tie(0),cout.tie(0);
	cf{
		cin>>n;
		string s;
		cin>>s;
		int a,b;
		a=b=0;
		for(auto i:s){
			if(i=='Q')a++;
			else b++;
			b=min(b,a);
		}
		if(b!=a)cout<<"NO";
		else cout<<"YES";
		cout<<endl;
	}
}

B. Kevin and Permutation

思路:通过手写几个样例,会发现价值最大是n/2,假设x=n/2,那么按照x+1,1,x+2,2,x+3,3,...排列即可。

#include <bits/stdc++.h>//#include<iostream>//#include<string.h>//#include<math.h//#include<algorithm>
#define ll long long
#define db double
#define pii pair<int,int>
#define cf int _;cin>>_;while(_--)
#define de cout<<"---"<<endl;
#define mem(x,v) memset(x,v,sizeof(x))
#define L(x) x&(-x)
#define pb push_back//emplace_back//priority_queue <int,vector<int>,greater<int> > q;
#define INF 0x3f3f3f3f
#define endl '\n'
//function<void(int)> dfs = [&](int u);
//#define x first
//#define y second
using namespace std;
const int mod=998244353;
int n;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
int main(){
	ios::sync_with_stdio(0);cin.tie(0),cout.tie(0);
	cf{
		cin>>n;
		int t=n/2;
		for(int i=t;i>=1;i--){
			for(int j=i;j<=n;j+=t){
				cout<<j<<" ";
			}
		}
		cout<<endl;
	}
}

C1 and C2. Make Nonzero Sum

思路:首先我们发现交替和的不会改变-1,0,1这一段数和的奇偶性,那么我们就可以判断所给数组的和是不是偶数去判断是否有解。然后以和s是正数为例,显然这数组中的1多了,那么我们需要将s/2个1变成-1即可,即把他们放在一段的第二位,其他数自己为一段即可,我们可以证明因为一定有多于s个的1,那么这样的操作是一定有解的,s是负数同理。

#include <bits/stdc++.h>//#include<iostream>//#include<string.h>//#include<math.h//#include<algorithm>
#define ll long long
#define db double
#define pii pair<int,int>
#define cf int _;cin>>_;while(_--)
#define de cout<<"---"<<endl;
#define mem(x,v) memset(x,v,sizeof(x))
#define L(x) x&(-x)
#define pb push_back//emplace_back//priority_queue <int,vector<int>,greater<int> > q;
#define INF 0x3f3f3f3f
#define endl '\n'
//function<void(int)> dfs = [&](int u);
//#define x first
//#define y second
using namespace std;
const int mod=998244353;
int n;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
int main(){
	ios::sync_with_stdio(0);cin.tie(0),cout.tie(0);
	cf{
		cin>>n;
		vector<int>a(n+1);
		int t=0;
		for(int i=1;i<=n;i++){
			cin>>a[i];
			t+=a[i];
		}
		if(t%2!=0)cout<<"-1"<<endl;
		else {
			bool ok=1;
			if(t<0){
				ok=0;
				t=-t;
			}
			t/=2;
			cout<<n-t<<endl;
			for(int i=1;i<=n;i++){
				if(t){
					if(ok&&a[i+1]==1){
						cout<<i<<" "<<i+1<<endl;
						t--;
						i++;
					}
					else if(!ok&&a[i+1]==-1){
						cout<<i<<" "<<i+1<<endl;
						t--;
						i++;
					}
					else cout<<i<<" "<<i<<endl;
				}
				else cout<<i<<" "<<i<<endl;
			}
		}
	}
}

D. Factorial Divisibility

思路:首先我们知道(i+1)!=i!*(i+1),那么这一题我们只需要将小的阶乘合成大的阶乘,判断最后是不是只剩x的阶乘即可。

#include <bits/stdc++.h>//#include<iostream>//#include<string.h>//#include<math.h//#include<algorithm>
#define ll long long
#define db double
#define pii pair<int,int>
#define cf int _;cin>>_;while(_--)
#define de cout<<"---"<<endl;
#define mem(x,v) memset(x,v,sizeof(x))
#define L(x) x&(-x)
#define pb push_back//emplace_back//priority_queue <int,vector<int>,greater<int> > q;
#define INF 0x3f3f3f3f
#define endl '\n'
//function<void(int)> dfs = [&](int u);
//#define x first
//#define y second
using namespace std;
const int mod=998244353;
int n;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
int main(){
	ios::sync_with_stdio(0);cin.tie(0),cout.tie(0);
//	cf{
		int x;
		cin>>n>>x;
		vector<int>a(x+1,0);
		for(int i=0;i<n;i++){
			int t;
			cin>>t;
			a[t]++;
		}
		bool ok=1;
		for(int i=1;i<x;i++){
			if(a[i]%(i+1)){
				ok=0;
			}
			else {
				a[i+1]+=a[i]/(i+1);
			}
		}
		if(ok)cout<<"YES";
		else cout<<"NO";
		cout<<endl;
//	}
}

### 关于Codeforces Round 704 Div. 2 的信息 对于Codeforces Round 704 Div. 2的比赛,虽然未直接提及具体题目解析或参赛体验的内容,但是可以根据平台的一贯风格推测该轮比赛同样包含了多种算法挑战。通常这类赛事会涉及数据结构、动态规划、图论等方面的知识。 考虑到提供的参考资料并未覆盖到此特定编号的比赛详情[^1],建议访问Codeforces官方网站查询官方题解或是浏览社区论坛获取其他选手分享的经验总结。一般而言,在赛后不久就会有详细的解答发布出来供学习交流之用。 为了帮助理解同类型的竞赛内容,这里提供了一个基于过往相似赛事的例子——如何通过居中子数组特性来解决问题的方法: ```cpp // 假设有一个函数用于处理给定条件下的数组恢复问题 vector<int> restoreArray(vector<vector<int>>& adjacentPairs) { unordered_map<int, vector<int>> adj; for (auto& p : adjacentPairs){ adj[p[0]].push_back(p[1]); adj[p[1]].push_back(p[0]); } int start = 0; for(auto& [num, neighbors] : adj){ if(neighbors.size() == 1){ start = num; break; } } vector<int> res(adjacentPairs.size() + 1); unordered_set<int> seen; function<void(int,int)> dfs = [&](int node, int idx){ seen.insert(node); res[idx] = node; for(auto next : adj[node]){ if(!seen.count(next)){ dfs(next, idx + 1); } } }; dfs(start, 0); return res; } ``` 上述代码展示了利用深度优先搜索(DFS)重建原始序列的一种方式,这与某些情况下解决Codeforces比赛中遇到的问题思路相吻合[^4]。 #### 注意事项 由于缺乏针对Codeforces Round 704 Div. 2的具体材料支持,以上解释更多依赖于对同类活动的理解以及编程技巧的应用实例来进行说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值