[蓝桥杯][2018年第九届真题]迷宫与陷阱、版本分支、自描述序列

个人题解链接,蓝桥杯历届试题,正在更新中~

迷宫与陷阱

题目描述
小明在玩一款迷宫游戏,在游戏中他要控制自己的角色离开一间由NxN个格子组成的2D迷宫。
小明的起始位置在左上角,他需要到达右下角的格子才能离开迷宫。
每一步,他可以移动到上下左右相邻的格子中(前提是目标格子可以经过)。
迷宫中有些格子小明可以经过,我们用’.‘表示;
有些格子是墙壁,小明不能经过,我们用’#'表示。
此外,有些格子上有陷阱,我们用’X’表示。除非小明处于无敌状态,否则不能经过。

有些格子上有无敌道具,我们用’%'表示。
当小明第一次到达该格子时,自动获得无敌状态,无敌状态会持续K步。
之后如果再次到达该格子不会获得无敌状态了。

处于无敌状态时,可以经过有陷阱的格子,但是不会拆除/毁坏陷阱,即陷阱仍会阻止没有无敌状态的角色经过。

给定迷宫,请你计算小明最少经过几步可以离开迷宫
输入
第一行包含两个整数N和K。 (1 <= N <= 1000 1 <= K <= 10)
以下N行包含一个NxN的矩阵。
矩阵保证左上角和右下角是’.’。
输出
一个整数表示答案。如果小明不能离开迷宫,输出-1。
样例输入
5 3
…XX
##%#.
…#.
.###.

样例输出
10

思路
bfs,难点在于怎么处理可以重复走的问题,又考虑到可能捡到道具后又要捡到下一个道具才能去到终点,所以又要处理重复走了之后还能重复走的问题。由于题目没有告诉我们道具的数量,所以给每个道具单独开一个标记数组不现实。注意到捡了道具后最多走10步,所以可以开10倍的标记数组,vis[i][j][k] 代表走到了i,j位置还能无视陷阱走k步。这样空间复杂度其实还是依赖于道具的数量。所以只能祈祷道具不多。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const double Pi = acos(-1);
namespace {
   
   
  template <typename T> inline void read(T &x) {
   
   
    x = 0; T f = 1;char s = getchar();
    for(; !isdigit(s); s = getchar()) if(s == '-') f = -1;
    for(;  isdigit(s); s = getchar()) x = (x << 3) + (x << 1) + (s ^ 48);
    x *= f;
  }
}
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define _for(n,m,i) for (register int i = (n); i <  (m); ++i)
#define _rep(n,m,i) for (register int i = (n); i <= (m); ++i)
#define _srep(n,m,i)for (register int i = (n); i >= (m); i--)
#define _sfor(n,m,i)for (register int i = (n); i >  (m); i--)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define lowbit(x) x & (-x)
#define pii pair<int,int>
#define fi first
#define se second
const int N = 1e3+5;
char s[N][N];
bool vis[N][N][11];
int dx[] = {
   
   0,0,1,-1};
int dy[] = {
   
   1,-1,0,0};
struct node {
   
   
  int x, y, k, step;
};
int n, k;
void fun(int x, int y) {
   
   
  for(int i = -k; i <= k; i++) {
   
   
    for(int j = -k; j <= k; j++) {
   
   
      if(x + i >= 0 && x + i < n && y + j >= 0 && y + j < n) vis[x+i][y+j][1] = 0;
    }
  }
}
int bfs
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值