CF414B Mashmokh and ACM DP

本文介绍了一种使用动态规划解决好数列计数问题的方法。好数列定义为一个数列中每个数都能被前一个数整除。文章详细阐述了状态转移方程的设计与实现,并给出完整代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意:

如果一个数列中,后一个数都能被前面一个数整除,那么就叫这个数列为好数列。输入n,k,求数列中最大元素为n,数列长度为k的好数列的种数(对1000000007取模)

思路

状态设计:dp[i][j]dp[i][j]dp[i][j] 结尾为数字iii,长度为jjj

方程:dp[i][j]=dp[d][j−1]dp[i][j]=dp[d][j-1]dp[i][j]=dp[d][j1]dddiii的约数

初始化:dp[i][1]=1dp[i][1]=1dp[i][1]=1

递推方式:dp[d][j]+=dp[i][j−1]dp[d][j] +=dp[i][j-1]dp[d][j]+=dp[i][j1],dddiii的倍数,我们可以递推出i的倍数

答案为:∑i=1ndp[i][k]\sum_{i=1}^ndp[i][k]i=1ndp[i][k]

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const double Pi = acos(-1);
namespace {
  template <typename T> inline void read(T &x) {
    x = 0; T f = 1;char s = getchar();
    for(; !isdigit(s); s = getchar()) if(s == '-') f = -1;
    for(;  isdigit(s); s = getchar()) x = (x << 3) + (x << 1) + (s ^ 48);
    x *= f;
  }
}
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define _for(n,m,i) for (register int i = (n); i <  (m); ++i)
#define _rep(n,m,i) for (register int i = (n); i <= (m); ++i)
#define _srep(n,m,i)for (register int i = (n); i >= (m); i--)
#define _sfor(n,m,i)for (register int i = (n); i >  (m); i--)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define lowbit(x) x & (-x)
#define pii pair<int,int>
#define fi first
#define se second
const int N = 2e3+5;
LL dp[N][N];
const LL Mod = 1e9+7;
int main() {
  int n, k; read(n); read(k);
  _rep(1, n, i) dp[i][1] = 1;
  _for(1, k, j) {
    _rep(1, n, i) {
      for(int d = i; d <= n; d += i) {
        dp[d][j+1] += dp[i][j];
        if(dp[d][j+1] >= Mod) dp[d][j+1] -= Mod;
      }
    }
  }
  LL ans = 0;
  _rep(1, n, i) {
    ans += dp[i][k];
    if(ans >= Mod) ans -= Mod;
  }
  cout << ans << endl;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值