
其他开源库
夏天7788
知行合一
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
fftw的使用
1. 号称世界上最快的fft变换。 2. 数据大小最好是2^n,速度才能更快。 3. plan的初始化一次就好,之后只需要往初始化的数据池中copy要fft的数据即可,初始化比较耗时。 4. CUDA中有相应的API,cufft和fftw两个lib可供使用。原创 2016-07-20 15:51:33 · 3592 阅读 · 0 评论 -
libsvm 核函数 交叉验证 参数优化
转自:http://blog.csdn.net/chlele0105/article/details/17026963 1.下载及安装 libsvm3.1下载:http://download.csdn.net/detail/chlele0105/6631687 里面包含了libsvm和参数寻优算法,GA,GridSearch,PSO等 安装:http://www转载 2016-12-20 16:10:06 · 3861 阅读 · 0 评论 -
SVN常用命令
1. Repo-browse 首次使用,设置连接到服务器的地址。 之后使用,浏览服务器上的信息。 可以把要添加的本地文件拖进正在浏览的文件夹右边的空白处,相当于添加文件。 2. SVN Check out 关联服务器,并下载关联的文件内容。 3. SVN Commit 上传当地文件,使得服务器文件与本地同步,增加本版。 4. Revert 将当地文件恢复成服务器上最新版本。 5原创 2016-01-26 14:20:38 · 275 阅读 · 0 评论 -
sklearn classification_report 输出说明
svm-rbf 0.606 precision recall f1-score support 0.0 0.56 0.39 0.46 431 1.0 0.62 0.77 0.69 569 avg /原创 2017-01-12 14:56:41 · 16390 阅读 · 1 评论 -
XGBoost:多分类问题
转自:http://blog.csdn.net/leo_xu06/article/details/52424924 下面用数据 UCI Dermatology dataset演示XGBoost的多分类问题 首先要安装好XGBoost的C++版本和相应的Python模块,然后执行如下脚本,如果本地没有训练所需要的数据,runexp.sh负责从https://archive.ics.u转载 2017-03-15 14:37:54 · 1858 阅读 · 0 评论 -
XGBoost Stopping to Avoid Overfitting(early_stopping_rounds )
from:http://blog.csdn.net/lujiandong1/article/details/52777168 XGBoost模型和其他模型一样,如果迭代次数过多,也会进入过拟合。表现就是随着迭代次数的增加,测试集上的测试误差开始下降。当开始过拟合或者过训练时,测试集上的测试误差开始上升,或者说波动。下面通过实验来说明这种情况: 下面实验数据的来源:https://archi转载 2017-03-15 15:29:30 · 4657 阅读 · 1 评论 -
深度学习框架的比较(MXNet, Caffe, TensorFlow, Torch, Theano)
from:http://blog.csdn.net/myarrow/article/details/52064608 1. 基本概念 1.1 MXNet相关概念 深度学习目标:如何方便的表述神经网络,以及如何快速训练得到模型 CNN(卷积层):表达空间相关性(学表示) RNN/LSTM:表达时间连续性(建模时序信号) 命令式编程(imperati转载 2017-03-30 13:44:08 · 858 阅读 · 0 评论 -
知识|深度学习开源框架caffe中的这些超参数你知道吗 前端信息 百家号|05-29 00:54 关注
from:https://baijiahao.baidu.com/po/feed/share?wfr=spider&for=pc&context=%7B%22sourceFrom%22%3A%22bjh%22%2C%22nid%22%3A%22news_3960259049607189919%22%7D 配置文件中的参数: base_lr: 0.001lr_policy: "ste转载 2017-05-31 09:44:23 · 699 阅读 · 0 评论 -
转:xgboost特征选择
Xgboost在各大数据挖掘比赛中是一个大杀器,往往可以取得比其他各种机器学习算法更好的效果。数据预处理,特征工程,调参对Xgboost的效果有着非常重要的影响。这里介绍一下运用xgboost的特征选择,运用xgboost的特征选择可以筛选出更加有效的特征代入Xgboost模型。 这里采用的数据集来自于Kaggle | Allstate Claims Severity比赛,这转载 2017-11-15 16:48:49 · 3133 阅读 · 1 评论 -
xgboost入门以及windows下安装及使用一
http://blog.csdn.net/angelazy/article/details/25552947 https://github.com/dmlc转载 2017-01-04 15:48:43 · 1398 阅读 · 0 评论 -
在Python中使用XGBoost
转自:http://blog.csdn.net/zc02051126/article/details/46771793 下面将介绍XGBoost的Python模块,内容如下: * 编译及导入Python模块 * 数据接口 * 参数设置 * 训练模型l * 提前终止程序 * 预测 A walk through python example for UCI Mu转载 2017-01-08 08:07:10 · 4155 阅读 · 0 评论 -
xgboost 调参经验
转自: http://blog.csdn.net/u010414589/article/details/51153310 本文介绍三部分内容: - xgboost 基本方法和默认参数 - 实战经验中调参方法 - 基于实例具体分析 1.xgboost 基本方法和默认参数 在训练过程中主要用到两个方法:xgboost.train()和xgboost.cv(). #x转载 2017-01-09 13:28:45 · 2386 阅读 · 0 评论 -
XGBoost-Python完全调参指南-参数解释篇
转自:http://blog.csdn.net/wzmsltw/article/details/50994481 在analytics vidhya上看到一篇Python>,写的很好。因此打算翻译一下这篇文章,也让自己有更深的印象。具体内容主要翻译文章的关键意思。 原文见: http://www.analyticsvidhya.com/blog/2016/03/complet转载 2017-01-06 11:15:11 · 1577 阅读 · 0 评论 -
LibSVM学习详细说明
转自:http://blog.csdn.net/zy_zhengyang/article/details/45009431 代码文件主要针对Matlab进行说明,但个人仍觉得讲解的支持向量机内容非常棒,可以做为理解这一统计方法的辅助资料; LibSVM是台湾林智仁(Chih-Jen Lin)教授2001年开发的一套支持向量机的库,这套库运算速度还是挺快的,可以很方便的对转载 2016-12-19 11:03:11 · 2021 阅读 · 0 评论