Python sklearn 中的SVM示例

Python sklearn 中的SVM示例

# -*- coding: utf-8 -*-
import pandas as pd
from numpy.random import shuffle
from sklearn import svm
import joblib
from sklearn import metrics

inputfile = '../Data/moment.csv'
outputfile1 = '../Data/WaterEval_train.csv'
outputfile2 = '../Data/WaterEval_test.csv'


def readData():
    """
    读取数据
    :return:
    """
    data = pd.read_csv(inputfile, encoding='utf8')
    data = data.as_matrix().astype(float)
    shuffle(data)  # 随机打乱
    data_train = data[:int(0.8 * len(data)), :]  # 训练集矩阵
    data_test = data[int(0.8 * len(data)):, :]  # 测试集矩阵
    return data_train, data_test


def train(data_train, data_test):
    """
    训练
    :param data_train:
    :param data_test:
    :return:
    """
    x_train = data_train[:, 2:] * 30  # 放大特征,矩阵2维
    y_train = data_train[:, 0].astype(int)  # 矩阵1维
    x_test = data_test[:, 2:] * 30  # 放大特征
    y_test = data_test[:, 0].astype(int)

    # C:错误项的惩罚系数。C越大,即对分错样本的惩罚程度越大,
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值