自然语言处理中关键概念——词嵌入(Word Embedding)

       词嵌入(Word Embedding)是一种在自然语言处理中广泛使用的表示方法,它将离散的词汇表中的每个词转换为一个连续向量空间中的稠密向量这种低维度实数向量能够捕捉词语之间的语义和句法关系。

       通过训练神经网络模型(如word2vec、GloVe或FastText等),可以在大规模文本语料库上学习到这些词嵌入。经过预训练后,每个单词会被映射到一个固定长度的向量上,这个向量可以反映该单词在整个语料库中的上下文信息和潜在语义特征词嵌入技术极大地改善了机器学习模型对自然语言的理解能力,通常作为下游任务(如情感分析、文本分类、命名实体识别等)的基础特征输入。

1.词嵌入(Word Embedding)的特点

       词嵌入(Word Embedding)是自然语言处理中的一种重要技术,它将词汇表中的每个单词转换成一个低维度、连续的向量表示。这种向量通常被称为词向量,具有以下特点:

  1. 稠密性:与传统的基于one-hot编码的方式不同,词嵌入使用的是稠密向量,即每个单词不再是一个高维空间中几乎全为零、只有一个位置为一的稀疏向量,而是长度固定且所有元素都是实数值的密集向量。

  2. 语义和句法信息:词嵌入旨在捕获单词之间的语义相似性和句法关系。例如,通过训练好的词嵌入模型,"猫"和"狗"这两个词的向量在向量空间中的距离会比较接近,因为它们在语义上都是宠物;而"猫"和"飞机"的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值