37、超加密与最优黑盒秘密共享技术解析

超加密与最优黑盒秘密共享技术解析

1. 超加密相关引理证明

在对抗空间受限敌手的超加密领域,有两个重要引理需要证明。

引理 1 证明
[
\begin{align }
|\langle g(A, B), B\rangle - \langle g(A, B’), B’\rangle| &= \frac{1}{2}\sum_{b}\sum_{c}|\Pr[g(A, B) = c \land B = b] - \Pr[g(A, B’) = c \land B’ = b]|\
&= \frac{1}{2}\sum_{b}\sum_{c}|\Pr[g(A, b) = c]\Pr[B = b] - \Pr[g(A, b) = c]\Pr[B’ = b]|\
&= \frac{1}{2}\sum_{b}\sum_{c}\Pr[g(A, b) = c]|\Pr[B = b] - \Pr[B’ = b]|\
&= \frac{1}{2}\sum_{b}|\Pr[B = b] - \Pr[B’ = b]|\
&= |B - B’|
\end{align
}
]
其中第二个等式成立是因为 (A) 与 (B) 和 (B’) 都相互独立。

引理 2 证明
当 (b) 从分布 (B) 中采样时,(|\langle A | B = b\rangle - U|) 的期望为:
[
\begin{align }
&\

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值