超加密与最优黑盒秘密共享技术解析
1. 超加密相关引理证明
在对抗空间受限敌手的超加密领域,有两个重要引理需要证明。
引理 1 证明 :
[
\begin{align }
|\langle g(A, B), B\rangle - \langle g(A, B’), B’\rangle| &= \frac{1}{2}\sum_{b}\sum_{c}|\Pr[g(A, B) = c \land B = b] - \Pr[g(A, B’) = c \land B’ = b]|\
&= \frac{1}{2}\sum_{b}\sum_{c}|\Pr[g(A, b) = c]\Pr[B = b] - \Pr[g(A, b) = c]\Pr[B’ = b]|\
&= \frac{1}{2}\sum_{b}\sum_{c}\Pr[g(A, b) = c]|\Pr[B = b] - \Pr[B’ = b]|\
&= \frac{1}{2}\sum_{b}|\Pr[B = b] - \Pr[B’ = b]|\
&= |B - B’|
\end{align }
]
其中第二个等式成立是因为 (A) 与 (B) 和 (B’) 都相互独立。
引理 2 证明 :
当 (b) 从分布 (B) 中采样时,(|\langle A | B = b\rangle - U|) 的期望为:
[
\begin{align }
&\