基于DH - DDH分离的唯一签名与可验证随机函数
1. 利用高效关系证明降低复杂度
在密码学协议中,高效证明承诺值之间的关系可以用一种不同的方式来降低通信复杂度和轮次复杂度。具体操作步骤如下:
1. 各方就关系的布尔电路达成一致。
2. 证明者逐位对见证值以及电路在见证值和实例上的评估结果进行承诺。
3. 证明者为电路中的每个门证明所承诺的值与该门是一致的。
4. 打开对输出门的承诺,证明者将揭示的值作为其输出。
该协议本身没有消息交互,所有交互都通过理想承诺功能 $F_{HCOM}$ 完成。设使用的门的大小为 $l$,此协议需要 $O(l)$ 个单比特承诺,每个承诺需要 $O(k)$ 比特的通信量;还需要进行 $O(l)$ 次关系证明,每次证明也需要 $O(k)$ 比特的通信量。因此,总的通信量为 $O(lk)$ 比特,相较于使用其他方案时的 $O(lkt)$ 比特,在通信复杂度上有了 $O(t)$ 倍的提升。
2. 唯一签名与可验证随机函数概述
2.1 签名方案的发展与需求
签名方案是密码学中最重要的对象之一,与公钥密码学一同被发明。最初,Diffie和Hellman开创了公钥密码学领域,随后Rivest、Shamir和Adleman提出了第一个候选签名方案。Goldwasser、Micali和Rivest给出了第一个即使在对手可以选择消息获取签名的情况下仍然安全的签名方案,这种安全性定义被称为GMR安全性。
如今,一个理想的签名方案除了要满足GMR安全性定义外,还应具备以下两个额外属性:
1. 在纯模型中安全,即无需随机预言机或公共参数。
2.