F.grid_sample采样

本文深入探讨PyTorch中的grid_sample函数,该函数用于根据预定义的坐标对图像进行最近邻、双线性或bicubic采样。输入为4维张量input(N_in,C_in,H_in,W_in),grid(N_in,H_out,W_out,2)定义采样点。采样在每个通道独立进行,保持通道数不变,但调整大小。align_corners参数影响坐标设置,对采样结果有显著影响。博客提供了详细示例并引用了相关资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简而言之,该函数就是可以根据自己定义的坐标,按照指定的采样方式,对一张图进行采样。(采样的方式可以是最近邻的,也可以是双线性的,还有bicubic)

输入要求是4维或5维,我们以4维举例,假设输入为input(N_in,C_in,H_in, W_in),再定义grid(N_in, H_out, W_out, 2);grid就是我们要采样的各个点,其最后一个维度2就是坐标, H_out, W_out定义了采样后输出的结果图的大小,最后的输出为output(N_in,C_in,H_out, W_out)

也就是说,采样是在各个通道上单独进行的,比如输入是512个通道,则每一个通道都按照grid的坐标进行采样,所以是不会改变通道数的,但是会改变大小,因为我们把一张图看作是连续的,那么我们可以对其进行无穷尽的采样。

比如:

 a为:

 grid坐标为:

 结果为:

但有个参数要注意,align_corners,它决定了对原图的坐标该怎么设置,这对后面的采样有影响,参考自:pytorch中的grid_sample() (icode9.com)

其他参考:(4条消息) F.grid_sample_北落师门XY的博客-CSDN博客_f.grid_sample

grid_sample()函数及双线性采样 - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值