密码学中的消息认证、数字签名与素性测试
在密码学领域,消息认证、数字签名以及素性测试都是至关重要的概念,它们为数据的安全性和完整性提供了坚实的保障。下面将详细介绍这些概念及其相关算法。
消息认证码(MAC)
消息认证码用于验证消息的完整性和真实性。当使用密码学哈希函数时,可能会存在弱点,因为攻击者可以通过篡改消息直到找到有意义的碰撞。为了提供更高的安全性,我们可以使用消息认证码(MAC),并在生成消息摘要的过程中添加一个通常为秘密的密钥 $k_s$。
CBC - MAC
CBC - MAC 使用私钥密码系统,通常返回 CBC 模式加密过程的最后一个块。例如,给定数据 $m = m_0||m_1|| \cdots ||m_N$,块大小为 $n$,消息认证码可以定义为:
$MAC_{k_s} : Z_2^* \to Z_2^n$,$MAC_{k_s}(m) = e_{k_s}(m_0 \oplus m_1 \oplus \cdots \oplus m_N)$
然而,这种 MAC 存在安全问题。如果已知 $(m, MAC_{k_s}(m))$,可以构造新的数据 $q$ 使得 $MAC_{k_s}(q||q_N) = MAC_{k_s}(m)$。
CMACs(Cipher MAC)
CMACs 是 MAC 的扩展。首先使用 CBC - MAC,然后从一个密钥生成两个临时密钥,通过加密 $e_{k_s}(0 \cdots 0)$、左移循环和可能的异或操作。目前,这种消息认证码被认为是安全的。
基于哈希的消息认证码(HMAC)
MDC - MAC 是基