利用辗转相除法计算最大公约数与最小公倍数

google的一道面试题目,两个数字m,n,其取值的范围为0~100000.怎么求这两个数的最大公约数与最小公倍数。

首先想到地就是辗转相除法来求解这道题目。

算法思想如下:

设两数为a、b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q......r1(0≤r1)。若r1=0,则(a,b)=b;若r1≠0,则再用b除以r1,得b÷r1=q......r(0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r1除以r2……如此下去,直到能整除为止。其最后一个为被除数的余数的除数即为(a, b)。例如:a=25,b=15,a/b=1......10,b/10=1......5,10/5=2.......0,最后一个为被除数余数的除数就是5,5就是所求最大公约数。

一般人会使用递归的方法进行计算,我采用非递归的方法来实现,完整的代码实现如下:

#include<iostream>
#include<vector>

using namespace std;

int gcd(int m,int n)
{
	int gcd_flag=1;
	int flag=1;
	int temp=0;

	if(m<n)
	{
		m=m+n;
		n=m-n;
		m=m-n;
	}
	if(m==0||n==0)
	{
		gcd_flag=0;
		flag=0;
	}
	while(flag)
	{
		temp=m%n;
		if(temp==0)
		{
			gcd_flag=n;
			flag=0;
		}
		else
		{
			m=n;
			n=temp;
		}
	}
	return gcd_flag;
}
int main()
{
	int data1,data2;

	int gys,gbs;
	cin>>data1>>data2;

	gys=gcd(data1,data2);
	gbs=data1*data2/gys;

	cout<<"公约数:"<<gys<<"公倍数:"<<gbs<<endl;
}
	
递归的版本更加容易理解:

int gcd_recursion(int m,int n)
{
	if(m<n)
	{
		m=m+n;
		n=m-n;
		m=m-n;
	}
	if(m%n==0)
		return n;
	else
		return gcd_recursion(n,m%n);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值