散点矩阵图 (Scatter Matrix Plot) 是数据探索阶段的强大工具,特别适合分析多维数据集中变量间的关系。在本文中,我们将使用 MATLAB 来创建散点矩阵图,并探索经典的 Fisher's Iris 数据集。
一、散点矩阵图简介
散点矩阵图是一种组合图表,它将多个变量之间的散点图排列在一个矩阵中。对角线通常显示每个变量的分布情况,而非对角线位置展示变量对之间的关系。这种可视化方式能帮助我们快速识别:
- 变量间的相关性
- 数据中的聚类或分组
- 异常值和数据分布特征
- 不同类别数据的分布差异
二、MATLAB 实现散点矩阵图
下面是使用 MATLAB 绘制散点矩阵图的完整代码:
% 加载Fisher's Iris数据集
load fisheriris;
% 提取测量数据(花瓣和萼片的长度与宽度)
X = meas(:, 1:4);
% 将物种名称转换为分类变量
species = categorical(species);
% 创建新图形窗口
figure;
% 绘制散点矩阵图
% 第一个参数X:包含所有变量的数据矩阵
% 第二个参数[]:表示不使用额外的分组变量
% 第三个参数species:用于为不同类别数据设置不同颜色
gplotmatrix(X, [], species);
% 添加标题
title('Fisher''s Iris数据集散点矩阵图');
% 保存图像
saveas(gcf, '散点矩阵图.jpg');
三、代码解析
让我们逐步解析这段代