MATLAB 散点矩阵图:探索多维数据关系的可视化工具

散点矩阵图 (Scatter Matrix Plot) 是数据探索阶段的强大工具,特别适合分析多维数据集中变量间的关系。在本文中,我们将使用 MATLAB 来创建散点矩阵图,并探索经典的 Fisher's Iris 数据集。

一、散点矩阵图简介

散点矩阵图是一种组合图表,它将多个变量之间的散点图排列在一个矩阵中。对角线通常显示每个变量的分布情况,而非对角线位置展示变量对之间的关系。这种可视化方式能帮助我们快速识别:

  • 变量间的相关性
  • 数据中的聚类或分组
  • 异常值和数据分布特征
  • 不同类别数据的分布差异

二、MATLAB 实现散点矩阵图

下面是使用 MATLAB 绘制散点矩阵图的完整代码:

% 加载Fisher's Iris数据集
load fisheriris;
% 提取测量数据(花瓣和萼片的长度与宽度)
X = meas(:, 1:4);
% 将物种名称转换为分类变量
species = categorical(species);
% 创建新图形窗口
figure;
% 绘制散点矩阵图
% 第一个参数X:包含所有变量的数据矩阵
% 第二个参数[]:表示不使用额外的分组变量
% 第三个参数species:用于为不同类别数据设置不同颜色
gplotmatrix(X, [], species);
% 添加标题
title('Fisher''s Iris数据集散点矩阵图');
% 保存图像
saveas(gcf, '散点矩阵图.jpg');

三、代码解析

让我们逐步解析这段代

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code_Verse

下章剧情由你定~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值