大规模网页去重系统的简单设计和实现

    网页去重算法应用到了很多领域,例如:spam,推荐系统等,目前工作中需要用到网页的去重算法,量级大概是每天60W左右,但是由于是线上的系统,对系统能快速查找重复文章的性能要求较高,这里简单记下我们的思路和方法。

    算法调研:其实网页去重算法本质上都是提取网页的特征集合,然后根据这些特征来计算网页的相似度,我们主要调研了以下两种方法:

    1.yahoo的shingle算法:来源于yahoo的一篇论文,算法主要是将文档计算成m个64bit整数,计算两篇文档中相同的整数的个数b,一般b=1的时候两篇文档就非常相似了。利用此算法构建的去重系统计算效率较低,1s可以计算300篇作用的文档,但是查重的效率很高,评估的准确率在98%左右。

    2.google的SImHash算法:之前找工作面试的时候看过这个算法,算法大概是:首先将文档转成特征的集合,并且特征都有一定的权重,然后利用lsh算法将特征转换为m位的fingerprint,最后计算每一个fingerprint的海明距离,一般m为64.这个算法计算fingerprint的效率很快,可以达到1的10倍以上,但是查询的效率很低,并且准确率不如1

    以上两种算法都需要对网页进行预处理,比如去除html标签,去除标点符号等,比较短的内容效果会比较差,建议采用MD5算法替代,1算法中正文理想中的长度大于66Bytes效果不错。

    系统设计:

        处理能力:算法计算效率:300~400篇文档/s,内存占用:1000W篇文档占用内存约500M,系统会定期的将比较老的数据清除,查询基本能满足线上的需求。

        系统框架:

        

### 设计实现基于Spring Boot的网络舆情分析系统 #### 1. 系统架构概述 构建一个高效的网络舆情分析系统涉及多个组件技术栈的选择。核心模块包括数据采集、预处理、情感分析以及可视化展示。整个系统的架构可以分为以下几个层次: - **前端层**:负责用户界面交互,通常使用HTML/CSS/JavaScript框架如Vue.js或React来开发响应式的Web应用。 - **服务端API层**:利用Spring Boot搭建RESTful API接口,用于接收来自客户端请求并返回相应的业务逻辑结果给前端显示。 - **数据分析层**:此部分专注于对抓取到的数据执行自然语言处理(NLP),特别是针对中文文本的情感倾向度评估。 #### 2. 数据获取与清洗 为了收集目标网站上的评论信息或其他形式的意见表达内容,可以选择合适的库来进行网页爬虫操作。例如Apache Nutch适合大规模生产环境下的高效索引建立工作;而如果只是简单的需求,则Crawler4j可能更为轻便适用[^1]。此外,在提取页面结构化数据方面,JSoup是一个非常强大的工具,它能够轻松解析、清理甚至修改HTML文档中的特定标签属性值。 ```java // 使用 JSoup 进行简单的 HTML 解析示例 Document doc = Jsoup.connect("http://example.com").get(); Elements newsHeadlines = doc.select("#news-headlines a"); for (Element headline : newsHeadlines) { System.out.println(headline.attr("href")); } ``` #### 3. 文本预处理流程 在正式进入机器学习模型之前,需要先完成一系列必要的准备工作,比如除停用词(stop words removal)、分词(tokenization)、(deduplication)等步骤。这些措施有助于提高后续建模过程中的效率及准确性。 #### 4. 情感分析算法选型 考虑到不同场景下各自的特点,这里推荐两种主流的方法作为候选方案: - **Logistic Regression(LR)** **Naive Bayes(NB)** 是两类经典且易于理解的基础分类器。尽管两者都存在一定的缺陷——LR缺乏复杂特征组合能力且容易陷入局部极值点附近徘徊不前;NB则过分依赖于条件概率分布假设从而影响泛化性能——但在实际项目中仍然具有广泛的应用价值[^2]。 对于更高级别的需求而言,还可以探索诸如支持向量机(SVM)、随机森林(Random Forests)甚至是深度神经网络(DNN)这样的现代技术手段。 #### 5. 结果呈现方式 最后一步就是将经过训练后的预测输出转换成直观易懂的形式反馈给最终使用者。这可以通过图表绘制(Chart Rendering)或者报表生成功能来达成目的。借助ECharts这类开源图形库可以在浏览器内实时渲染动态折线图(Line Chart)、柱状图(Column Chart)等多种类型的统计视图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值