读论文——ResNet

本文详细介绍了ResNet残差网络的设计理念,通过对比普通网络和残差网络在ImageNet上的表现,展示了残差网络如何解决深度学习中的梯度消失问题,从而在图像识别、目标检测等多个任务上取得优异效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一遍

  • 标题:Deep Residual Learning for Image Recognition

  • 作者:何恺明

  • 摘要:

    • We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions 残差网络学习输入的残差函数
    • 在ImageNet上152层,网络更深,计算复杂度更低
    • 在目标分类、检测和语义分割上都取得不错的效果

第二遍

  • 重要的图和表

  • Fig1.

在这里插入图片描述

更深的网络具有更大的训练误差和测试误差(在CIFAR-10和ImageNet上的测试)

  • Fig2.

    在这里插入图片描述

    残差学习的构建模块

  • Fig 3.

在这里插入图片描述

对比VGG-19、普通神经网络、带残差神经网络的结构图。

残差网络:虚线表示将x维度增加到y的维度

  • Fig 4.

    在这里插入图片描述

    上图是网络训练在ImageNet上的训练误差变化,可以发现普通网络34层的训练误差大于18层,但是对于残差网络,网络层数变多后,训练误差变小了,而且对于验证集上的误差(粗线)也变得更小。可以认为,残差网络在增加网络深度后,对于训练集可以更好地拟合并且具有更好的泛化性。

  • Fig 5.

在这里插入图片描述

可用更深的残差模块

  • Fig 6.

    在这里插入图片描述

    注解:虚线表示训练误差、实线表示测试误差

    左图表示普通神经网络,中间图表示残差网络,右图残差网络110和1202

  • Fig 7.

    在这里插入图片描述

    不知道

  • table 1.

    在这里插入图片描述

    网络框架图

  • table 2.

    在这里插入图片描述

    普通网络和残差网络,在ImageNet上的Top-1错误率

  • table 3.

    在这里插入图片描述

    不同模型在ImageNet验证集上的top-1和top-5错误率

  • table 4.

    在这里插入图片描述

    单模型能力

  • table 5.

    在这里插入图片描述

    集成模型能力

  • table 6.

    在这里插入图片描述

    CIFAR-10上的分类错误率

  • table 7.

    在这里插入图片描述

    在PASCAL VOC 2007/2012测试集上使用Faster R-CNN基线的目标检测mAP

  • table 8.

    在这里插入图片描述

    在COCO验证集上使用Faster R-CNN基线的目标检测mAP

  • table 9.

    在这里插入图片描述

    MS COCO上使用Faster R-CNN ResNet-101

  • table 10.

    在这里插入图片描述

  • table 11.

在这里插入图片描述

  • table 12.

    在这里插入图片描述

  • table 13.

    在这里插入图片描述

  • table 14.

    在这里插入图片描述

第三遍

  • 1.导言

    • 背景:随着网络的加深,简单的堆叠(恒等映射),训练误差开始下降。(网络退化)
    • 提出公式:H(x)=F(x)+xH(x)=F(x)+xH(x)=F(x)+x
    • 优点:通过叠加非线性层优化原始的F(x)F(x)F(x),没有通过优化H(x)−xH(x)-xH(x)x简单
    • 实现方法:通过调层连接实现(Fig. 2.),而且既没有增加额外参数也没有增加计算复杂度。
    • 结果:在很多比赛上取得第一,在不同数据集上表现很好,网络深度做到最深
  • 2.相关工作

    • 残差表示
      • 简化优化
    • 跳层连接
      • 相较于带有门控的跳层连接,没有参数
  • 3.深度残差学习

    • 残差学习
      • 残差学习具有更小的标准差
    • Identity Mapping by Shortcuts
      • 公式:y=F(x,{Wi})+xy = F(x,\{ W_i \})+xy=F(x,{Wi})+x,x,y分别表示输入和输出,F表示残差映射(x,y维度相同)
      • 公式:y=F(x,{Wi})+Wsxy=F(x,\{ W_i\})+W_sxy=F(x,{Wi})+Wsx,针对于x,y维度不同的时候
    • 网络框架
      • 平凡模型:VGG,1.特征图尺寸相同,卷积核个数相同,2.如果特征图尺寸减半,卷积核个数翻倍
      • 残差网络:1.对于输入输出维度不等的情况,填充0 2. 使用投影(卷积网络中使用1x1卷积核)
    • 实现
      1. 先从最短的边,开始随机采样[256,480]
      2. 224*224的裁剪,水平翻转
      3. 标准颜色增强
      4. 在卷积后,激活函数前,采用BN
      5. batch_size:256,优化方法:SGD,学习率从0.1开始除以10(遇到错误平原),权重衰减0.0001,动量为0.9
      6. 在测试阶段,原始图片中截出10张图片,然后预测投票
  • 4.实验

    1. 分类
    2. 目标检测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值