定义
马尔科夫矩阵满足:1. 每个元素是非负的;2. 每列元素相加等于 1。
满足以上条件,即为马尔可夫矩阵
性质1
由:1. 每个元素是非负的;2. 每列元素相加等于 1
易知:矩阵任意元素aija_{ij}aij满足 0≤aij<10 \le a_{ij} <10≤aij<1
性质2
由:1. 每个元素是非负的;2. 每列元素相加等于 1
可知:矩阵存在 λ=1\lambda=1λ=1的特征值
证明:
矩阵存在 λ=1\lambda=1λ=1的特征值
矩阵特征值求解:|A−λ∗I|=0|A-\lambda*I|=0|A−λ∗I|=0, λ\lambdaλ即为特征值
任意马尔可夫矩阵P,每列元素和为1,则 P-I 的每列元素和为0,则 P-I 的行向量和为0向量。
因此, ∣P−1∗I∣|P-1*I|∣P−1∗I∣ 行业式经过变
换后存在某一行向量为0向量,则 ∣P−1∗I∣=0|P-1*I|=0∣P−1∗I∣=0.
因此,1是马尔可夫矩阵的特征值。
测试、验证:
马尔可夫矩阵存在λ=1\lambda=1λ=1的特征值
p = np.matrix([[0.5, 0.25, 0.25], [0.8, 0.1, 0.1], [0.2, 0.2, 0.6]]).T
eigenvalue, eigenvector= np.linalg.eig(p)
eigenvalue
array([ 1. , -0.16457513, 0.36457513])
eigenvector
matrix([[ 0.77534804, 0.80070884, -0.66581264],
[ 0.32802313, -0.57079184, -0.06676528],
[ 0.53966308, -0.18182964, 0.74312578]])
性质3
转移矩阵收敛,马尔可夫链到达平稳状态
设初始状态为A0A_{0}A0, 状态转移矩阵P为马尔可夫矩阵。
A1A_{1}A1 = P * A0A_{0}A0
A2A_{2}A2 = P * A1A_{1}A1
A3A_{3}A3 = P * A2A_{2}A2
…
An+1A_{n+1}An+1 = P * AnA_{n}An
当n大到一定程度后, An+1A_{n+1}An+1 = AnA_{n}An
证:马尔可夫矩阵的幂仍是马尔可夫矩阵
设矩阵P为任意马尔可夫矩阵,Pij∈PP_{ij}\in PPij∈P
P=[a1b1...m1a2b2...m2............anbn...mn]P= \left[ \begin{matrix} a1 & b1 & ... & m1\\ a2 & b2 & ... & m2 \\ ... & ... & ... & ... \\ an & bn & ... & mn \end{matrix} \right] P=⎣⎢⎢⎡a1a2...anb1b2...bn............m1m2...mn⎦⎥⎥⎤
P∗Pj=[a1∗j1+b1∗j2+...+m1∗jna2∗j1+b2∗j2+...+m2∗jn............an∗j1+bn∗j2+...+mn∗j1]P*P_{j}= \left[ \begin{matrix} a1*j1 + b1*j2 + ... + m1*jn\\ a2*j1 + b2*j2 + ... + m2*jn \\ ... & ... & ... & ... \\ an*j1 + bn*j2 + ... + mn*j1 \end{matrix} \right] P∗Pj=⎣⎢⎢⎡a1∗j1+b1∗j2+...+m1∗jna2∗j1+b2∗j2+...+m2∗