马尔可夫矩阵与马尔可夫链收敛

本文介绍了马尔可夫矩阵的定义和性质,包括矩阵元素非负、每列和为1,以及马尔可夫矩阵的幂仍为马尔可夫矩阵。详细证明了马尔可夫矩阵的特征值绝对值不超过1,并讨论了当n足够大时马尔可夫链如何收敛到平稳状态。通过实例验证了马尔可夫矩阵的幂运算和特征向量与初始状态无关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

马尔科夫矩阵满足:1. 每个元素是非负的;2. 每列元素相加等于 1。
满足以上条件,即为马尔可夫矩阵

性质1

由:1. 每个元素是非负的;2. 每列元素相加等于 1
易知:矩阵任意元素aija_{ij}aij满足 0≤aij<10 \le a_{ij} <10aij<1

性质2

由:1. 每个元素是非负的;2. 每列元素相加等于 1
可知:矩阵存在 λ=1\lambda=1λ=1的特征值

证明:

矩阵存在 λ=1\lambda=1λ=1的特征值

矩阵特征值求解:|A−λ∗I|=0|A-\lambda*I|=0AλI=0, λ\lambdaλ即为特征值
任意马尔可夫矩阵P,每列元素和为1,则 P-I 的每列元素和为0,则 P-I 的行向量和为0向量。
因此, ∣P−1∗I∣|P-1*I|P1I 行业式经过变
换后存在某一行向量为0向量,则 ∣P−1∗I∣=0|P-1*I|=0P1I=0.
因此,1是马尔可夫矩阵的特征值。

测试、验证:

马尔可夫矩阵存在λ=1\lambda=1λ=1的特征值

p = np.matrix([[0.5, 0.25, 0.25], [0.8, 0.1, 0.1], [0.2, 0.2, 0.6]]).T
eigenvalue,  eigenvector= np.linalg.eig(p)
eigenvalue

array([ 1. , -0.16457513, 0.36457513])

eigenvector

matrix([[ 0.77534804, 0.80070884, -0.66581264],
[ 0.32802313, -0.57079184, -0.06676528],
[ 0.53966308, -0.18182964, 0.74312578]])

性质3

转移矩阵收敛,马尔可夫链到达平稳状态
设初始状态为A0A_{0}A0, 状态转移矩阵P为马尔可夫矩阵。
A1A_{1}A1 = P * A0A_{0}A0
A2A_{2}A2 = P * A1A_{1}A1
A3A_{3}A3 = P * A2A_{2}A2

An+1A_{n+1}An+1 = P * AnA_{n}An
当n大到一定程度后, An+1A_{n+1}An+1 = AnA_{n}An

证:马尔可夫矩阵的幂仍是马尔可夫矩阵

设矩阵P为任意马尔可夫矩阵,Pij∈PP_{ij}\in PPijP
P=[a1b1...m1a2b2...m2............anbn...mn]P= \left[ \begin{matrix} a1 & b1 & ... & m1\\ a2 & b2 & ... & m2 \\ ... & ... & ... & ... \\ an & bn & ... & mn \end{matrix} \right] P=a1a2...anb1b2...bn............m1m2...mn
P∗Pj=[a1∗j1+b1∗j2+...+m1∗jna2∗j1+b2∗j2+...+m2∗jn............an∗j1+bn∗j2+...+mn∗j1]P*P_{j}= \left[ \begin{matrix} a1*j1 + b1*j2 + ... + m1*jn\\ a2*j1 + b2*j2 + ... + m2*jn \\ ... & ... & ... & ... \\ an*j1 + bn*j2 + ... + mn*j1 \end{matrix} \right] PPj=a1j1+b1j2+...+m1jna2j1+b2j2+...+m2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值