剑指Offer(12)______数值的整数次方

本文介绍了一种使用快速幂算法计算浮点数的整数次幂的方法,并提供了详细的C++实现代码。该算法能够高效地处理正数、负数甚至0的幂次计算问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个double类型的浮点数base和int类型的整数exponent。求base的exponent次方。


class Solution {
public:
     
    bool equal(double a,double b){
        if(fabs(a-b) < 0.00001) return true;
        return false;
    }
     
    double quilckPower(double base,unsigned int exponent)
    {
        if(exponent == 0)return 1;
        if(exponent == 1)return base;
        if(exponent&1) return base*quilckPower(base*base,exponent>>1);
        return quilckPower(base*base,exponent>>1);
    }
     
    double Power(double base, int exponent) {
             
        if(equal(base,0) && exponent <= 0) return 0;       //鲁棒性:  求0的非正数次方无意义.
         
        if(equal(base,0)) return 0;                       //优化: 0为底数结果可以直接为0。
         
        if(exponent == 0) return 1;
        else if(exponent > 0)
            return quilckPower(base,exponent);
        else
            return 1.0/quilckPower(base,abs(exponent));
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值