# encoding=utf-8 #使用文本注解绘制树形图 import matplotlib.pyplot as plt decisionNode = dict(boxstyle="sawtooth", fc="0.8") leafNode = dict(boxstyle="round4", fc="0.8") arrow_args = dict(arrowstyle="<-") #上面三行代码定义文本框和箭头格式 #定义决策树决策结果的属性,用字典来定义,也可写作 decisionNode={boxstyle:'sawtooth',fc:'0.8'} #其中boxstyle表示文本框类型,sawtooth是波浪型的,fc指的是注释框颜色的深度 #arrowstyle表示箭头的样式 def plotNode(nodeTxt, centerPt, parentPt, nodeType):#该函数执行了实际的绘图功能 #nodeTxt指要显示的文本,centerPt指的是文本中心点,parentPt指向文本中心的点 createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction', va="center", ha="center", bbox=nodeType, arrowprops=arrow_args ) #获取叶节点的数目
《机器学习实战》——在python中使用Matplotlib注解绘制树形图
最新推荐文章于 2024-07-26 11:40:56 发布