
数学大类专栏
该专栏主要记录和收集关于基础数学学习方面的内容
给自己让步
能让你走得更远的,往往是自律,积极和勤奋。。。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
离散的Gronwall inequality
离散的Gronwall inequality原创 2025-03-28 11:20:55 · 512 阅读 · 0 评论 -
近几年计算数学偏微分方程数值解这个方向还有哪些可以做的小领域?
近几年计算数学偏微分方程数值解这个方向还有哪些可以做的小领域?原创 2024-09-22 08:35:46 · 960 阅读 · 0 评论 -
Tridiagonal Matrices: Thomas Algorithm
Tridiagonal Matrices: Thomas Algorithm原创 2024-09-05 14:58:20 · 521 阅读 · 0 评论 -
When can a sum and integral be interchanged?
When can a sum and integral be interchanged?原创 2024-08-08 22:15:28 · 245 阅读 · 0 评论 -
Is exchanging integral and sum this way allowed?
Is exchanging integral and sum原创 2024-08-08 22:01:16 · 281 阅读 · 0 评论 -
What is the difference between square of sum and sum of square?
Seehttps://math.stackexchange.com/questions/439220/what-is-the-difference-between-square-of-sum-and-sum-of-square#:~:text=If%20xi%20%E2%89%A5%200%2C%20then%20%28n%20%E2%88%91%20i,estimated%20against%20eachother%20loosing%20only%20a%20multiplicative%20const原创 2024-08-08 21:52:29 · 362 阅读 · 0 评论 -
The sum of the squares is less than or equal to the square of the sums for all na
The sum of the squares is less than or equal to the square of the sums for all na原创 2024-08-08 21:49:32 · 258 阅读 · 0 评论 -
嵌入定理-Embed Theorem
嵌入定理原创 2024-04-28 11:16:16 · 2847 阅读 · 0 评论 -
C^k Function
Function原创 2024-04-26 20:01:25 · 205 阅读 · 0 评论 -
Embeddings between Hölder spaces C^{0,β}↪C^{0,α}
Embeddings between Hölder spaces $C^{0,β}$↪$C^{0,α}$原创 2024-04-26 10:02:13 · 231 阅读 · 0 评论 -
n 维空间中球面的面积及对应球的体积
n 维空间中球面的面积及对应球的体积原创 2024-03-31 20:19:52 · 1656 阅读 · 0 评论 -
一个变限积分的上界估计
变限积分的估计原创 2024-03-11 10:25:07 · 469 阅读 · 0 评论 -
Python实现多个点中距离最远的两个点
Python实现多个点中距离最远的两个点原创 2024-03-09 21:50:13 · 777 阅读 · 0 评论 -
Python编程实现点到点、点到线、点到矩形、以及点到任意多边形的最短距离
Python编程实现点到点、点到线、点到矩形、以及点到任意多边形的最短距离原创 2024-03-09 21:45:17 · 424 阅读 · 0 评论 -
多边形质心(centroid)的计算方法
多边形质心(centroid)的计算方法原创 2024-03-09 19:34:17 · 1291 阅读 · 0 评论 -
基于物理信息的神经网络相场法(PF-PINNs)数值模拟二维不可压缩两相流动
基于物理信息的神经网络相场法(PF-PINNs)数值模拟二维不可压缩两相流动原创 2024-02-27 18:49:08 · 876 阅读 · 0 评论 -
多重网格法(Multigrid Method)及其Python实现
多重网格法(Multigrid Method)及其Python实现原创 2024-02-27 16:59:13 · 1020 阅读 · 0 评论 -
多重网格(Multigrid Method)-4
多重网格(Multigrid Method)-4原创 2024-02-26 10:01:44 · 616 阅读 · 0 评论 -
多重网格(Multigrid Method)-3
多重网格(Multigrid Method)-3原创 2024-02-26 09:29:56 · 1678 阅读 · 0 评论 -
多重网格(Multigrid Method)-2
多重网格(Multigrid Method)-2原创 2024-02-26 09:26:34 · 1196 阅读 · 0 评论 -
多重网格(Multigrid Method)-1
https://zhuanlan.zhihu.com/p/49489140?utm_id=0原创 2024-02-26 09:22:22 · 471 阅读 · 0 评论 -
多重网格方法(Multigrid Method)
多重网格方法(Multigrid Method)原创 2024-02-22 09:45:33 · 771 阅读 · 0 评论 -
两个发散级数的和是否发散?
两个发散级数的和是否发散?原创 2024-02-19 17:32:52 · 6641 阅读 · 0 评论 -
最小二乘法的计算复杂度Computational complexity of least square regression operation
最小二乘法的计算复杂度Computational complexity of least square regression operation原创 2024-02-09 09:28:22 · 1091 阅读 · 0 评论 -
Cos是Lipschitz连续函数(Show that f(x)=cos(x) is Lipschitz continuous function)
Cos是Lipschitz连续函数(Show that f(x)=cos(x) is Lipschitz continuous function)原创 2024-01-20 20:31:50 · 449 阅读 · 0 评论 -
从0到正无穷对e的-x^2次方积分等于多少?
超越函数e-(x^2)的定积分原创 2024-01-18 16:16:28 · 2558 阅读 · 0 评论 -
Five tips to make your essay flow
Five tips to make your essay flow原创 2024-01-02 20:49:15 · 924 阅读 · 0 评论 -
快速傅里叶变换 (FFT)的理解
快速傅里叶变换 (FFT)的理解原创 2024-01-02 13:59:25 · 1776 阅读 · 0 评论 -
指数衰减-Exponential Decay
指数衰减-Exponential Decay原创 2023-12-20 22:03:35 · 735 阅读 · 0 评论 -
数学公式推导中 “:=“和“:=“的区别
数学公式推导中 ":="和":="的区别原创 2023-12-16 13:12:52 · 735 阅读 · 0 评论 -
不完全伽马函数-Incomplete Gamma Function
不完全伽马函数-Incomplete Gamma Function原创 2023-12-14 21:18:50 · 456 阅读 · 0 评论 -
The Eigenvalues and Eigenvectors of Tridiagonal Toeplitz Matrix-三对角
见博客:https://blog.csdn.net/zhouchangyu1221/article/details/105293593/References[1].https://www.math.upenn.edu/~kazdan/AMCS602/tridiag-short.pdf [2]. https://en.wikipedia.org/wiki/Tridiagonal_matrix[3]. https://en.wikipedia.org/wiki/Toep原创 2022-05-20 15:35:20 · 259 阅读 · 0 评论 -
Infinite summation of exponential functions-狄利克雷级数
Infinite summation of exponential functions-狄利克雷级数原创 2023-11-27 10:43:43 · 79 阅读 · 0 评论 -
狄利克雷级数-(Dirichlet series)
狄利克雷级数-(Dirichlet series)原创 2023-11-27 10:24:37 · 203 阅读 · 0 评论 -
An example of a function uniformly continuous on R but not Lipschitz continuous
An example of a function uniformly continuous on R but not Lipschitz continuous原创 2023-11-26 19:53:16 · 120 阅读 · 0 评论 -
How to show square root of absolute of x isn‘t Lipschitz function
How to show square root of absolute of x isn't Lipschitz function原创 2023-11-26 19:52:01 · 108 阅读 · 0 评论 -
指数函数是局部利普希茨-The exponential function is locally Lipschitz
The exponential function is locally Lipschitz原创 2023-11-26 19:47:07 · 524 阅读 · 0 评论 -
Prove that exponential function f(x)=e^x is not Lipschitz on R
Prove that exponential function f(x)=e^x is not Lipschitz on R原创 2023-11-26 19:43:51 · 111 阅读 · 0 评论 -
Python-Numpy中的repmat
Python-Numpy中的repmat原创 2023-11-20 16:07:00 · 626 阅读 · 0 评论 -
Trapezoidal Rule Integral
Trapezoidal Rule Integral原创 2023-11-18 19:05:42 · 227 阅读 · 0 评论