基于MNIST的手写数字识别

本文详细介绍了如何在Python中使用PyTorch库基于MNIST数据集训练一个卷积神经网络进行手写数字识别,包括数据预处理、网络结构定义、损失函数选择、训练和测试过程,同时对比了在GPU和CPU上的训练效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上次我们基于CIFAR-10训练一个图像分类器,梳理了一下训练模型的全过程,并且对卷积神经网络有了一定的理解,我们再在GPU上搭建一个手写的数字识别cnn网络,加深巩固一下

步骤

  1. 加载数据集
  2. 定义神经网络
  3. 定义损失函数
  4. 训练网络
  5. 测试网络

MNIST数据集简介

MINIST是一个手写数字数据库(官网地址:http://yann.lecun.com/exdb/mnist/),它有6w张训练样本和1w张测试样本,每张图的像素尺寸为28*28,如下图一共4个图片,这些图片文件均被保存为二进制格式

训练全过程

1.加载数据集

import torch
import torchvision
from torchvision import transforms
trainset = torchvision.datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ]))
trainloader = torch.utils.data.DataLoader(trainset,
                                          batch_size=64,
                                          shuffle=True
                                          )

testset = torchvision.datasets.MNIST('./data', train=False, transform=transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
]))
test_loader = torch.utils.data.DataLoader(testset
                                          , batch_size=64, shuffle=True)

展示一些训练图片

import nu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鹤入云霄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值