LeetCode 剑指 Offer 47.礼物的最大价值(动态规划)—— JavaScript

本文介绍了一种通过动态规划求解二维网格中从左上角到右下角的最大礼物价值路径的方法。通过更新原数组来记录从起点到各点的最大累积价值,并最终返回右下角的数值作为最大礼物价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题链接:https://leetcode-cn.com/problems/li-wu-de-zui-da-jie-zhi-lcof/


题描述:


解题思路:

每个单元格只能由另一个单元格向右走或者向下走到达,设 f(i, j) 为从棋盘左上角走到当前单元格的累计最大礼物价值。

所以 f(i, j) 为 f(i-1, j) 和 f(i, j-1) 中的较大值加上当前单元格的礼物价值 grid[i][j]。

对于边界:

(1)当 i==0 且 j ==0 时,f(i, j) = grid[i][j]。

(2)当 i==0 且 j !=0 时,f(i, j) = f(i, j-1) + grid[i][j]。

(3)当 j==0 且 i !=0 时,f(i, j) = f(i-1, j) + grid[i][j[。

(4)当 j !=0 且 i != 0 时,f(i,j) = max(f(i, j-1), f(i-1, j)) + grid[i][j]。

我们可以直接在原数组上进行 f(i, j) 的求值。


代码实现:

/**
 * @param {number[][]} grid
 * @return {number}
 */
var maxValue = function(grid) {
    for (let i = 0; i < grid.length; i++) {
        for (let j = 0; j < grid[0].length; j++) {
            if (i == 0 && j == 0) {
                grid[i][j] = grid[i][j];
            } else if (i == 0) {
                grid[i][j] = grid[i][j - 1] + grid[i][j];
            } else if (j == 0) {
                grid[i][j] = grid[i - 1][j] + grid[i][j];
            } else {
                grid[i][j] = Math.max(grid[i - 1][j], grid[i][j - 1]) + grid[i][j];
            }
        }
    }
    return grid[grid.length - 1][grid[0].length - 1];
};

时间复杂度:O(MN)(棋盘为 M*N)

空间复杂度:O(1)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值