
机器学习
文章平均质量分 82
港港胡说
轻舟已过万重山
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
概率论符号和公式整理
个人总结,仅限参考!以下整理了概率论中的SωSABSAcS−AAA∩BABPA∩BA∪BABA∖BABA∩Bc∅P∅0A⊆BABA⊥BPA∩BPAPBAA⊆SPA≥0PS1SA1A2A3...ijAi∩Aj∅P⋃i1∞Ai∑i1∞PAiPA∣BPBPA∩BBAPA∩BPA∣BPBPA∑i。原创 2025-06-29 10:46:27 · 586 阅读 · 0 评论 -
PyTorch学习之张量(Tensor)(一)
张量是PyTorch中最基础的数据结构,可视为多维数组的泛化形式,支持标量(0维)、向量(1维)、矩阵(2维)及更高维度的数据存储。动态计算图:允许实时构建和调整计算流程,适合复杂模型(如RNN)的灵活设计自动微分:通过autograd模块自动计算梯度,简化反向传播的实现。设备兼容性:可无缝运行于CPU或GPU,利用GPU加速大规模计算PyTorch 张量是深度学习任务的核心载体,其灵活的操作接口、高效的GPU加速能力与自动微分特性,使其成为模型开发与优化的基石。原创 2025-05-03 19:11:09 · 498 阅读 · 0 评论 -
机器学习中的分类和回归问题
数值输出,而非离散的类别标签。例如,预测房价、气温、销售额等连续值。其名称源于统计学中的“回归效应”,由高尔顿在研究父母与子女身高关系时提出,描述数据向平均值靠近的趋势,后被扩展为预测连续值的统称。问题是一种监督学习任务,其核心目标是将数据样本分配到预定义的。类别中,例如判断邮件是否为垃圾邮件、识别图像中的物体类型等。回归问题是机器学习中一种监督学习任务,其核心目标是预测。注:此文为AI生成后编辑。原创 2025-05-03 15:59:12 · 974 阅读 · 0 评论