论文阅读YOLO-World: Real-Time Open-Vocabulary Object Detection

核心:

在这里插入图片描述

  • 开放词汇的实时的yolo检测器。
  • 重参数化的视觉语言聚合路径模块Re-parameterizable VisionLanguage Path Aggregation Network (RepVL-PAN)
  • 实时核心:轻量化的检测器+离线词汇推理过程重参数化

方法

在这里插入图片描述
预训练方案:将实例注释重新定义为区域-文本对,通过大规模检测、定位和图像-文本数据进行预训练。
模型架构:YOLO-World由YOLO检测器、文本编码器和RepVL-PAN组成,利用跨模态融合增强文本和图像表示

基础结构

  • Yolo detectorV8, darknet+PAN+head
  • Text Encoder. CLIP+n-gram
  • Text Contrastive Head.两个3x3回归bbox框以及object embedding。object embedding与文本embedding计算相似度求对比loss
  • Inference with Offline Vocabulary.prompt提前确定好,提前计算好embedding。再重参数化到PAN模块。
    在这里插入图片描述

3.3. Re-parameterizable Vision-Language PAN

在这里插入图片描述
RepVL-PAN由多尺度图像特征{C3, C4, C5}形成,利用了自顶向下和自底向上的路径来加强图像特征和文本特征之间的交互。

  • Text-guided CSPLayer(文本->图像).文本embedding经过max-sigmoid加权到neck特征后与原始特征concat。
  • Image-Pooling Attention.(图像->文本)。多层图像特征和文本attention再加到文本embedding中

结果

在这里插入图片描述
又快又好!V100上达到了52FPS!!!
在这里插入图片描述

核心代码:

class RepConvMaxSigmoidAttnBlock(BaseModule):
    """Max Sigmoid attention block."""

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 embed_channels: int,
                 guide_channels: int,
                 kernel_size: int = 3,
                 padding: int = 1,
                 num_heads: int = 1,
                 use_depthwise: bool = False,
                 with_scale: bool = False,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(type='BN',
                                             momentum=0.03,
                                             eps=0.001),
                 init_cfg: OptMultiConfig = None,
                 use_einsum: bool = True) -> None:
        super().__init__(init_cfg=init_cfg)
        conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule

        assert (out_channels % num_heads == 0 and
                embed_channels % num_heads == 0), \
            'out_channels and embed_channels should be divisible by num_heads.'
        self.num_heads = num_heads
        self.head_channels = out_channels // num_heads
        self.use_einsum 
### 关于 YOLO-World 的实时开放词汇对象检测 YOLO-World 是一种先进的开放词汇对象检测框架,它结合了预训练的语言模型和视觉特征提取器来实现跨类别的目标识别能力[^1]。该方法的核心在于利用大规模语言模型中的语义信息增强传统计算机视觉模型的表现力。 #### 复现 YOLO-World 的主要步骤概述 为了成功复现 YOLO-World 模型,可以参考以下技术要点: 1. **数据准备** 需要收集并处理用于训练的基础图像数据集以及对应的标签文件。通常使用的公开数据集包括 COCO 和 ImageNet 等。这些数据集提供了丰富的标注信息,有助于构建高质量的训练环境。 2. **模型架构设计** YOLO-World 使用了一个融合模块将 CLIP(Contrastive Language–Image Pre-training)或其他多模态模型生成的文字嵌入向量与卷积神经网络提取的空间特征相结合。这种结构允许系统理解未见过的新类别名称而无需重新训练整个体系。 3. **代码库推荐** GitHub 上存在多个基于 PyTorch 或 TensorFlow 开发的相关项目可供学习借鉴。例如,“openvocabulary-detection”仓库提供了一套完整的解决方案,涵盖了从基础组件搭建到最终推理部署的所有环节。 4. **性能优化技巧** 在实际操作过程中,可以通过调整超参数、引入注意力机制等方式进一步提升检测精度。此外,还可以尝试迁移学习策略以减少计算资源消耗的同时获得更好的泛化效果。 以下是简单的 Python 脚本片段展示如何加载必要的依赖项并与自定义配置一起初始化一个基本版本的对象探测实例: ```python import torch from yoloworld.model import YoloWorldModel device = 'cuda' if torch.cuda.is_available() else 'cpu' model = YoloWorldModel(pretrained=True).to(device) def detect_objects(image_path): image_tensor = preprocess_image(image_path) # 定义自己的图片前处理函数 outputs = model(image_tensor.unsqueeze(0)) predictions = postprocess_outputs(outputs) # 同样需自行编写后置处理逻辑 return predictions ``` > 注:上述仅为示意代码,具体实现细节可能因不同开发者的设计思路有所差异,请参照官方文档或社区贡献者分享的最佳实践案例深入研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yang_daxia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值