23.1、背景引入
接下来,我们将通过一个真实的案例来探讨G1垃圾回收器的性能优化策略以及其背后的原理。
首先,我们需要理解的是,G1垃圾回收器的优化思想与我们之前讨论的“ParNew+CMS”垃圾回收器组合的优化思想在核心上是相似的。然而,由于G1的运行机制存在一些独特之处,因此在具体的优化策略上会有所不同。
让我们先来看一下这个案例的背景。这是一个拥有百万级注册用户的在线教育平台,主要服务于几岁到十几岁的孩子,注册用户数量大约为几百万,日活跃用户数量大约为几十万。
这个系统的业务流程相对简单,我们可以排除一些低频的行为,如选课、排课、浏览课程详情以及付费购买等。为什么这么说呢?因为对于一个在线教育平台来说,用户数量并不是特别大,它不同于电商平台,不会有每天都有大量用户进来浏览幼儿课程详情的情况。
一般来说,用户的行为流程是这样的:有人进来浏览一下,考虑一段时间,然后决定为自己孩子报名一个在线的英语课程或者数学课程。因此,用户浏览课程详情、下单付费、选课排课这些行为实际上是低频的,我们在考虑系统运行时几乎可以忽略这些行为。
那么,对于这样的一个系统,最关键的高频行为是什么呢?答案是:上课!
从这个系统的本质来看,这个平台的使用人群主要是幼儿园的孩子到中小学的孩子。他们白天需要上学,通常在晚上放学后的七八点钟以及周末是最活跃使用这个平台的时间段。
特别需要注意的是,每天晚上的那两三小时的高峰时期,几乎所有的日活跃用户(那些孩子)都会在这个时间段集中到平台上进行在线学习,例如青少年英语课或数学课。因此,这个晚上的两三小时将会是平台每天的绝对高峰期,而白天的流量则相对较小,可能有99%的流量都集中在晚上。如