曙光_deeplove
安徽霍邱人,长期从事遥感影像变化检测、机器学习、深度学习在图像分类、目标检测方面的应用工作
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
ONNX实践系列-将dbnet.onnx的hardsigmoid op用hardsigmoid.onnx整个去替换掉
这个dbnet.onnx是paddleocr转出来的,自带的有paddle的那个hardsigmoid算子 ,这个不好转到trt等框架,因此我们想把这个hardsigmoid 算子op替换成我们常规的pytorch框架转出来的hardsigmoid onnx那种。原创 2023-11-24 16:41:20 · 433 阅读 · 0 评论 -
ONNX实践系列-修改yolov5-seg的proto分支输出shape
本文主要介绍要将原始yolov5分割的输出掩膜从[b,c,h,.w]修改为[b, h, w, c]一般的做法就是使用:onnxsim里面带的推断shape的函数过一遍onnxsim就行了!这个是基于yolov5s-seg的,实际其他的m,l等模型那个节点的索引就不是208了。(2)上面我们看到转置完成后,detect的还是没有显式地显示出来。这个以后修改就要相应的去修改!原创 2023-11-24 16:03:59 · 703 阅读 · 0 评论 -
sam和mobilesam导出onnx的问题
环境:python==3.10,torchvision==0.12.0+cu113 onnx==1.12.0 onnxruntime==1.13.1我们在mobilesam工程(sam工程一样的)导出onnx的时候默认出现:”ValueError: Unsupported ONNX opset version: 16“然后我们就按照一些资料,将opset降低到使用13,结果还是不行:”repeat_interleavefor idx, r_split in enumerate(r_splits):原创 2023-10-06 10:57:33 · 1282 阅读 · 0 评论 -
In-Place操作及onnx导出
out-of-place只是分配新对象并保留对旧计算图的引用,而in-place操作则需要将所有输入的创建更改为代表此操作的函数。out-of-place只是分配新对象并保留对旧计算图的引用,而 in-place 操作则需要将所有输入的创建更改为代表此操作的函数。这就是为什么我建议使用 PyTorch 标准的in-place 操作(如上面的in-place ReLU) ,而不是手动实现。就地操作:是直接更改给定Tensor的内容而不进行复制的操作,即不会为变量分配新的内存(不分配新的对象)。原创 2023-09-19 20:44:44 · 435 阅读 · 0 评论 -
yolov5-cls部署之onnx导出
本文旨在介绍说明yolov5自带的分类如何导出动态的batch的onnx。其中输出两种形式:形式(1):导出带softmax映射到概率的形式(2):导出不带softmax的,这个也是官方默认的方式我们先看下如何得到我们想要的仅有动态batch的导出,在export.py中修改代码如下:导出的onnx可视化如下:原始官方导出是不带softmax概率映射的,因此想要获得带softmax的onnx,可以有两种做法:(1)修改源码。原创 2023-06-26 11:32:01 · 1567 阅读 · 0 评论 -
yolov5-seg(实例分割)的tensorRT部署
yolov5-seg(实例分割)的tensorRT部署原创 2022-10-17 09:26:08 · 2804 阅读 · 28 评论 -
onnx如何在中间删除了一个节点,怎么样把剩下的节点连接一起呢
onnx原创 2022-09-16 22:49:44 · 1467 阅读 · 0 评论 -
yolov7导出可被trt解析的onnx
onnx、yolov7原创 2022-07-07 17:47:38 · 1613 阅读 · 6 评论 -
retinanet pytorch转换onnx Unsample 问题
retinanet pytorch转换onnx Unsample 问题 pytorch转onnx踩坑日记_贝猫说python的博客-CSDN博客转载 2022-04-21 17:30:31 · 270 阅读 · 0 评论 -
onnx中的where op
onnx中的where op是pytorch中的什么操作产生的呢? 试了torch.where 以及 a[mask]等操作 都没有产生。 也没搜到。 想记录学习下 。答案:看下expand (我自己给的答案),我还没有验证原创 2022-04-21 09:22:00 · 2453 阅读 · 0 评论 -
randperm算子不支持导出onnx
问:想跟您请教下torch.randperm这个算子转onnx不支持应该怎么实现? 答复:可以先用 ONNX_FALLTHROUGH转成onnx,然后再给TensorRT写个plugin,转出来后也可以用ONNX-graphsurgeon把这个node展开成TRT支持的node(如果可以等效替换掉的话)。 注意:好像没法用TRT layer表示randperm:torch.randperm — PyTorch 1.11.0 documentation 有人也给了其他思路,比如:用rand原创 2022-04-21 09:13:53 · 1130 阅读 · 0 评论 -
出现ImportError: No module named optimizer解决方法
方法参考:https://github.com/onnx/onnx/issues/582原创 2021-07-23 09:56:11 · 3473 阅读 · 0 评论