【GCN-RS】多行为推荐:Multi-behavior Recommendation with Graph Convolutional Networks (SIGIR‘20)

该博客介绍了MBGCN(Multi-behavior Recommendation with Graph Convolutional Networks)在SIGIR'20上的应用,用于处理多交互行为场景,如收藏、加购和购买。MBGCN通过用户和物品嵌入传播、物品相关性感知的物品-物品传播以及联合预测等步骤,考虑不同行为对用户和物品的影响。模型最终通过两种协同过滤评分方法结合BPR损失进行训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-behavior Recommendation with Graph Convolutional Networks (SIGIR’20)

场景是多交互行为场景,用户和物品的交互可能包括收藏、加购、点击、购买等,这是一个异质图

文章提出MBGCN,主要分为四个部分:

User Embedding Propagation

用户embedding由不同行为对用户的影响决定,不同行为重要性和稀疏性不同,所以先算不同行为对用户的响应权重:
αut=wt⋅nut∑m∈Nrwm⋅num \alpha_{u t}=\frac{w_{t} \cdot n_{u t}}{\sum_{m \in N_{r}} w_{m} \cdot n_{u m}} αut=mNrwmnumwtnut
其中wtw_twt行为重要性,文章中是可训练参数,我觉得可以根据业务指定。NrN_{r}Nr 是行为种类数。然后利用这个权重融合交互物品的embedding:
pu,tl=aggregate⁡(qil∣i∈Nt(u))pul+1=W(l)⋅(∑t∈Nrαutpu,tl) \begin{array}{c} p_{u, t}^{l}=\operatorname{aggregate}\left(q_{i}^{l} \mid i \in N_{t}(u)\right) \\ p_{u}^{l+1}=W^{(l)} \cdot\left(\sum_{t \in N_{r}} \alpha_{u t} p_{u, t}^{l}\right) \end{array} pu,tl=aggregate(qiliNt(u))pul+1</

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值