这篇论文在全卷积神经网络FCN《Fully convolutional network》的基础上,修改和增加部分网络结构,使得网络可以在使用很少的训练数据的情况下,获得更精确的分割结果。
(一) 网络结构
网络由左边的 contracting path 和右边的 expansive path 组成。contracting path 是典型的卷积网络结构,由两个重复的3x3卷积(unpadded)组成,卷积操作后都跟随一个ReLU和步长为2的 2x2最大池化操作,用于下采样特征图。在每个下采样操作后,特征图的通道数都变为原来的2倍。
在 expansive path 中的每一步都使用2x2的反卷积来进行特征图的上采样操作,同时将特征图的通道数进行减半。并且将左边 contracting path 中的特征图与右边对应的特征图进行拼接,图中的灰色箭头部分,然后跟随两个3x3的卷积和一个ReLU激活函数。左右对应特征图的拼接是至关重要的,因为每一个卷积操作都会造成边界像素的损失。在最后一层,使用一个1x1的卷积将特征图通道数映射到所需的类别数,整个网络总共有23个卷积层。
在上采样部分,网络有着较大的特征图通道数,这使得网络能够将语义信息聚合到高分辨率的网络层中。针对图像边界区域的预测,作者通过将图像进行镜像来得到缺失部分的图像,然后再送入网络进行像素点的预测。
(二)训练
由于卷积都是没有padding操作的,所以输出图像的分辨率小于输入图像。为了最大限度地减少开销并最大限度地利用GPU内存,作者更倾向于大的输入图像分辨率而不是大的batchsize,从而将批处理减少到单个图像。因此作者使用了一个高的动量0.99,使得大量先前看到的训练样本决定了当前优化步骤中的更新。
激活函数是通过在最后特征图上逐像素的soft-max与交叉熵损失函数相结合来计算的。
soft-max的定义如下:,其中
表示特征通道k在像素上的激活,K是类别的数量,
是近似的最大值函数。当k有最大的激活
的时候,
约等于1,对于其他k值
约等于0。





作者预先计算每个真值分割的权重映射,以补偿训练数据集中某类像素的不同频率,并迫使网络在细胞接触之间学习一个小的分离边界,如图所示。 分离边界是使用形态学操作计算的,权重映射的计算公式为:

理想的初始权重应使网络中的每个特征映射具有近似的单位方差。作者通过标准差为 的高斯分布来初始化权重,N表示一个神经元的传入节点数(一个拥有64通道数的3x3卷积的N=9*64=576)
(三)数据增强
针对显微下的图像, 数据增强主要需要位移不变性和旋转不变性以及对形变和灰度值变化的鲁棒性。而训练样本的随机拉伸变换是使用少部分标注图像训练一个分割网络的关键部分。
作者在粗略的3x3网格上使用随机位移向量来生成光滑的形变,位移是从10个像素的标准差的高斯分布中采样得到的,每一个像素的位移都是使用双三次插值(bicubic interpolation)计算得到的 。在 contracting path 尾部的Drop-out层做了进一步的隐式数据增强。
学习单词:
Biomedical (有关)生物医学的 take into account 考虑到 build upon 指望、依赖、建立于
Seamless 无缝的、无漏洞的 extrapolate 推算、推断 contracting 收缩的、缩小的 compensate 补偿、弥补、抵消
Halve 减半 compensate 补偿、抵消 membrane 薄膜、隔膜 tissue (动植物的)组织