【体系结构】使用Roofline model 分析GPU性能

本文利用Roofline模型评估了GeForce RTX 2060和TITAN V在运行AlexNet和VGG16时的性能。GPU性能参数显示,RTX 2060的峰值算力为7.5 TFLOPS,TITAN V为7.0 TFLOPS。通过Roofline模型分析,发现AlexNet性能受限于带宽,VGG16则受限于峰值浮点运算速度。在RTX 2060上,VGG16表现更优;在TITAN V上,AlexNet表现更佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Roofline model 评估深度学习模型在GPU上运行的性能

本文使用Roofline model方式评估GeForce RTX 2060和TITAN V两款GPU上分别运行AlexNet以及VGGnet的性能。

  1. GPU性能参数
    根据NVDIA官网数据,GeForce RTX 2060 的峰值算力是7.5 TFLOPS,存储器带宽是336GB/s,TITAN V的峰值算力是7.0 TFLOPS,存储器带宽是652.8GB/s。
    在这里插入图片描述
    图1 GPU算力数据(来自NVDIA官网)
    在这里插入图片描述
    图2 GeForce RTX 2060 访存性能(来自NVDIA官网)
    在这里插入图片描述
    图3 TITAN V 访存性能(来自NVDIA官网)
  2. GPU的Roofline模型
    图4和图5分别是GeForce RTX 2060和TITAN V的Roofline Model。
    对于GeForce RTX 2060,当模型的计算密度小于22.27FLOP/BYTE时,模型的性能受GPU的带宽限制,当模型的计算密度大于22.27FLOP/BYTE时,模型的性能受GPU的峰值浮点运算速度限制。
    对于TITAN V,当模型的计算密度小于10.755FLOP/BYTE时,模型的性能受GPU的带宽限制,当模型的计算密度大于10.755FLOP/BYTE时,模型的性能受GPU的峰值浮点运算速度限制。<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值