作为经验丰富的C++程序员转型大模型领域,可充分发挥系统级优化、高性能计算和工程落地的优势。以下是分阶段学习计划:
阶段一:基础构建(1-2个月)
1. 数学与理论强化
- 线性代数:重点掌握矩阵运算、特征值分解(Transformer中的低秩近似基础)
- 概率统计:贝叶斯推断、KL散度(模型蒸馏的核心)
- 优化理论:凸优化、随机梯度下降的变体(如AdamW优化器原理)
2. 机器学习核心
- 深入推导经典算法:从逻辑回归到XGBoost的决策树分裂策略
- 重点掌握:反向传播的矩阵求导过程、BatchNorm的方差偏移问题
3. 深度学习基础
- 手写神经网络组件:用NumPy实现带DropPath的残差块
- 深入理解:Transformer位置编码的傅里叶级数本质
阶段二:工具链掌握(2-3个月)
1. 深度学习框架
- PyTorch高阶技巧:
- 自定义CUDA算子开发(利用C++经验编写融合算子)
- 分布式训练(DDP原理及Pipeline Parallelism实现)
- 框架源码研究:
- Autograd机制实现(C++底层tracing逻辑)
- TorchScript的图优化过程
2. 大模型专用工具
- Megatron-LM源码剖析:张量并行中的梯度同步策略
- DeepSpeed:Zero Redundancy Optimizer内存管理机制
- HuggingFace生态:定制Tokenizer的C++扩展开发
阶段三:大模型核心技术(3-4个月)
1. 架构演进
- Transformer变体:
- FlashAttention的IO复杂度优化(适合C++程序员深挖)
- MoE架构的专家路由算法(如GShard负载均衡策略)
2. 训练技术
- 混合精度训练:Loss Scaling的数学证明
- 3D并行:结合Pipeline/Tensor/Data并行的通信优化
- 稳定性控制:梯度裁剪的L2范数动态调整策略
3. 推理优化
- KV Cache压缩:窗口滑动策略的缓存置换算法
- Speculative Decoding:草案模型与验证模型的并发执行
阶段四:高阶实践(持续)
1. 系统级优化
- 开发自定义通信原语(结合RDMA的AllReduce实现)
- 模型量化工具链开发(基于LLVM的定点化Pass编写)
2. 领域定制
- 多模态架构设计:CLIP的图像-文本对齐损失函数改进
- 代码大模型:抽象语法树的图神经网络编码方法
3. 研究突破
- 新型注意力机制:基于Hyperbolic Space的注意力计算
- 训练算法创新:动态课程学习的自动化策略
阶段五:成果转化(持续)
- 开源贡献:向LLAMA、Falcon等开源项目提交C++层优化
- 专利布局:在模型压缩、训练加速等方向申请技术专利
- 架构设计:主导企业级大模型推理框架开发(结合ONNX Runtime优化)
学习资源精选
- 论文:精读GPT-4技术报告、LLaMA架构文档
- 课程:CMU 11-785深度学习系统课(侧重实现)
- 工具:学习使用Nsight Systems进行CUDA内核性能分析
核心竞争力构建
- 系统级思维:将C++的内存管理经验应用于显存优化
- 性能调优:使用VTune分析分布式训练中的通信瓶颈
- 全栈能力:从CUDA内核开发到服务部署的全链路掌控
通过将C++底层优势与大模型前沿技术结合,可在以下方向形成独特竞争力:
- 大模型推理引擎开发(类似vLLM)
- 训练框架底层优化(如CUDA算子融合)
- 边缘设备部署方案(基于WASM的轻量化运行时)
建议每周保持20+小时的深度学习(其中至少5小时阅读最新arxiv论文),6个月内可完成技术转型。