自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 numpy中的shape的用法二

b = [1,2,3] a = np.array(b) print(a) np.shape(a) 输出为: [1 2 3] (3,) b = [[1,2,3],[4,5,6]] a = np.array(b) print(a) np.shape(a) 输出为: [[1 2 3] [4 5 6]] (2, 3) b =[ [[1,2,3],[4,5,6]]] a = np.array(b) 输出为: [[[1 2 3] [4 5 6]]] (1, 2, 3) ...

2022-03-21 21:58:27 435

原创 np.shape[0],np.shape[1]

数组中的shape的用法,有一个我们经常迷糊的用法,就是np.shape[0],np.shape[1],到底是什么,下面我们来举例讲解。 首先: np.shape【0】:为第一维度的长度 np.shape【1】:为第二维度的长度 np.shape【2】:为第三维度的长度 ......以此类推 例1: b = [1,2,3] a = np.array(b) print(a) a.shape[0] 输出为:3(个元素) 例2: b = [[1,2,3],[4,5,6]] a = np.ar

2022-03-21 21:51:17 7187

原创 【无标题】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 X_train,X_test,y_train,y_test 前言 X_train,X_test,y_train,y_test各自的用处到底是啥? 例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。 提示:以下是本篇文章正文内容,下面案例可供参考 #一、X_train,X_test,y_train,y_test各自的意义 ①Xtrain 和 Ytrain都是原始数据,.

2022-03-21 21:19:23 1617

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除