- 博客(3)
- 收藏
- 关注
原创 numpy中的shape的用法二
b = [1,2,3] a = np.array(b) print(a) np.shape(a) 输出为: [1 2 3] (3,) b = [[1,2,3],[4,5,6]] a = np.array(b) print(a) np.shape(a) 输出为: [[1 2 3] [4 5 6]] (2, 3) b =[ [[1,2,3],[4,5,6]]] a = np.array(b) 输出为: [[[1 2 3] [4 5 6]]] (1, 2, 3) ...
2022-03-21 21:58:27
435
原创 np.shape[0],np.shape[1]
数组中的shape的用法,有一个我们经常迷糊的用法,就是np.shape[0],np.shape[1],到底是什么,下面我们来举例讲解。 首先: np.shape【0】:为第一维度的长度 np.shape【1】:为第二维度的长度 np.shape【2】:为第三维度的长度 ......以此类推 例1: b = [1,2,3] a = np.array(b) print(a) a.shape[0] 输出为:3(个元素) 例2: b = [[1,2,3],[4,5,6]] a = np.ar
2022-03-21 21:51:17
7187
原创 【无标题】
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 X_train,X_test,y_train,y_test 前言 X_train,X_test,y_train,y_test各自的用处到底是啥? 例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。 提示:以下是本篇文章正文内容,下面案例可供参考 #一、X_train,X_test,y_train,y_test各自的意义 ①Xtrain 和 Ytrain都是原始数据,.
2022-03-21 21:19:23
1617
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人