- 博客(385)
- 资源 (4)
- 收藏
- 关注
原创 33、C开发:JSON处理、代码优化与工具安装指南
本文详细介绍了C#开发中的JSON序列化与反序列化处理方法,包括使用模型绑定和自定义绑定器的技巧。同时提供了代码优化的清洁代码清单,帮助开发者编写高质量代码。此外,还涵盖了多种开发工具的安装指南,包括.NET Framework 4.x、.NET 5、Visual Studio及其跨平台版本。最后,介绍了如何在本地SQL Server实例中运行Flying Dutchman Airlines数据库,为开发和测试提供支持。
2025-09-12 13:10:47
11
原创 32、飞行荷兰人航空公司服务的实现与测试
本文详细介绍了飞行荷兰人航空公司服务中预订功能的实现与测试过程。重点包括自定义模型绑定的实现、数据验证逻辑、服务调用以及使用 OpenAPI 和 Swagger 进行验收测试。通过手动测试和动态生成 OpenAPI 规范,确保服务端点符合预期功能,并总结了开发过程中学到的关键技能和实践经验。
2025-09-11 09:01:58
11
原创 模拟研究与性能优化实践
本博客围绕统计模拟与性能优化展开,内容包括不使用simTool包进行置信区间比较的模拟研究、使用profvis分析并优化boot函数性能、柯西与威布尔分布的理论推导及随机变量生成、异方差线性模型的置信区间与自助法检验比较、经典与野生自助法的分布差异、以及拟合优度检验方法对比等。此外,还涉及糖尿病状态变量的回归估计实现。
2025-09-10 15:39:11
759
原创 31、JSON 序列化、反序列化与自定义模型绑定
本文详细介绍了在 ASP.NET Core 中实现 JSON 数据的序列化与反序列化,以及如何通过 [FromBody] 属性和自定义模型绑定器将 HTTP 请求数据绑定到业务模型(如 BookingData 类)。文章涵盖了 BookingController 的实现、数据验证、手动测试与验收测试等内容,并通过流程图和代码示例展示了整个数据处理过程。最后,还介绍了如何使用 Swagger 中间件生成 OpenAPI 规范并进行接口测试。
2025-09-10 14:31:16
10
原创 30、中间件、HTTP路由和HTTP响应
本文详细介绍了如何在C#中实现两个关键的API端点 `GET /Flight` 和 `GET /Flight/{FlightNumber}`,包括控制器逻辑编写、单元测试设计与实现、异常处理策略、HTTP路由配置以及端点测试方法。同时,文章还总结了中间件的作用、HTTP请求与响应机制、依赖注入类型等相关知识点,并提供了代码优化建议和常见问题的解决方案。通过本文,开发者可以全面掌握Web API开发中的核心概念和实践技巧。
2025-09-09 09:29:47
11
原创 29、飞行荷兰人航空公司服务:控制器层的实现
本文详细介绍了飞行荷兰人航空公司服务中控制器层的实现,重点包括控制器在架构中的位置、如何根据需求端点确定需实现的控制器、FlightController 的具体实现步骤,以及相关的异常处理、依赖注入和路由配置。文章还提供了单元测试用例以确保代码的稳定性,并总结了整个实现过程的关键要点。
2025-09-08 15:35:44
原创 28、C 异步编程与异常处理:深入解析 FlightService 类
本文深入解析了 C# 中的异步编程与异常处理机制,重点探讨了使用 IAsyncEnumerable<T> 和 yield return 进行异步数据枚举的方法。通过 FlightService 类的实现,展示了如何在 try-catch 块中安全使用 yield return,以及如何正确处理异常。文章还涵盖了单元测试、代码优化、溢出与下溢处理等关键主题,并提供了相关练习题和总结,帮助开发者编写健壮、高效的 C# 应用程序。
2025-09-07 14:05:01
原创 27、运行时类型检查、错误处理及异步集合的使用
本文详细介绍了在C#开发中运行时类型检查与错误处理的重要性及实现方法,深入探讨了服务层类的设计与实现,特别是FlightService类的开发过程。文章涵盖了使用Queue与yield return的对比、视图类的创建、单元测试的编写以及性能优化的建议,为开发者提供了完整的服务层开发实践指南。
2025-09-06 16:16:47
12
原创 26、医疗图像计算中的深度学习:挑战与未来方向
本文探讨了深度学习在医疗图像计算领域的应用现状、挑战和未来发展方向。尽管深度学习在医疗图像计算中取得了显著进展,但在临床工作流程中的有效性、数据稀缺、模型泛化能力以及负责任的人工智能等方面仍面临诸多挑战。文章进一步分析了新冠疫情相关研究、远程医疗、联邦学习、大数据与大规模预训练、少数据学习以及通用模型等未来趋势,指出这些方向有望推动医疗图像计算的发展,为医疗行业带来更多价值。
2025-09-06 11:02:36
18
原创 26、运行时类型检查与错误处理:服务层方法的验证与优化
本文探讨了服务层方法的运行时类型检查、输入参数验证以及错误处理机制,重点介绍了如何通过 `is` 和 `as` 运算符进行类型检查,并结合单元测试和模拟对象验证服务逻辑。文章还详细描述了如何通过依赖注入处理外键约束,优化服务类设计,提高代码的可维护性和健壮性。最后,通过全面的单元测试覆盖了各种异常场景,确保服务方法在复杂环境下依然能正确运行。
2025-09-05 10:52:03
11
原创 25、新型放射影像视图合成:XraySyn方法解析
本文详细介绍了一种名为XraySyn的两阶段放射影像视图合成方法。该方法通过3DPN(3D投影网络)和2DRN(2D优化网络)两个阶段的训练,实现了高质量的新视图生成。文章深入解析了XraySyn的实现细节、使用的数据集(如LIDC-IDRI和TBX11K)、评估指标(PSNR、SSIM、FID)以及与其他方法(如2D Refiner、X2CT等)的对比结果。此外,还探讨了XraySyn在骨骼抑制中的应用及其未来发展方向,包括分辨率提升、复杂成像条件处理及临床应用拓展。
2025-09-05 10:45:52
21
原创 25、深入探究预订服务实现与运行时类型检查
本文深入探讨了预订服务(BookingService)的实现过程,重点包括单元测试的正确编写、输入参数验证、运行时类型检查(如 is 和 as 运算符的使用)、多存储库调用、异常处理机制以及丢弃运算符的应用。通过详尽的代码示例和单元测试用例,展示了如何构建一个健壮且可维护的服务层。此外,文章还介绍了多个 catch 块的使用方式,以及在不同异常场景下的处理策略,帮助开发者提高代码的容错性和稳定性。
2025-09-04 12:59:15
11
原创 24、新型放射视图合成技术:XraySyn算法解析
本文介绍了一种名为XraySyn的新型放射视图合成算法,该算法通过两阶段的深度学习框架,从单张放射照片中估计三维上下文,并用于新型视图合成和骨骼提取。文章详细解析了XraySyn的核心组成部分,包括可微的CT2Xray算法、3D PriorNet(3DPN)和2D RefineNet(2DRN),并展示了其在真实放射照片上的实验评估结果。XraySyn在视图合成和骨骼提取方面表现优异,且无需多视图数据集即可实现端到端的学习。
2025-09-04 12:27:16
20
原创 23、医学影像合成的深度学习方法:原理与应用
本文介绍了医学影像合成中的深度学习方法,包括无条件医学影像合成、同质域合成和异质域合成的原理与应用。文章探讨了不同方法在医学影像计算中的适用场景、优势与局限性,并对相关技术细节进行了深入解析。最后,文章总结了当前技术面临的挑战,并展望了未来发展方向。
2025-09-03 13:02:37
16
原创 24、单元测试中的反射与模拟技术详解
本文详细探讨了在单元测试中如何使用反射与模拟技术,特别是在多层架构如存储库/服务模式中的实践。通过苏格拉底式的对话,文章引导读者理解测试范围的重要性,并深入介绍了存根与模拟的区别、Moq库的使用方法以及如何通过模拟对象提升测试效率。同时,文章提供了实际代码示例和最佳实践,帮助开发者更好地进行测试驱动开发(TDD)并提高代码质量。
2025-09-03 10:39:45
11
原创 22、医学图像重建与合成:无监督学习与生成模型的应用
本文探讨了无监督学习和生成模型在医学图像重建与合成中的应用。重点介绍了无配对学习和自监督学习在医学图像重建中的使用,包括金属伪影减少的案例研究。同时,分析了无条件合成、同质域合成和异质域合成在医学数据生成中的设计原则和实际应用。通过ADN等模型展示了这些方法在提升图像质量、数据增强和新颖视角图像合成方面的潜力。
2025-09-02 13:11:01
15
原创 23、服务层实现:反射、模拟与服务类构建
本文详细探讨了服务层的实现,包括服务类的设计与构建、反射和模拟对象的应用、单元测试的编写以及服务层整体架构和数据流分析。文章通过实现如 CustomerService 和 BookingService 等具体服务类,展示了服务层在降低系统耦合度、提升可维护性方面的重要作用,并介绍了使用 Moq 进行模拟测试、通过反射检索运行时信息等关键技术。同时强调了代码可读性和合理设计服务层方法的重要性。
2025-09-02 10:57:07
原创 45、算法速查表:深度学习与强化学习全解析
本文详细解析了深度学习与强化学习领域的核心算法,涵盖随机梯度下降(SGD)、Adam优化器、多臂老虎机、动态规划、DQN、PPO、TRPO等主流算法,并提供清晰的伪代码和操作步骤。通过分类总结和对比表格,帮助读者快速掌握不同算法的适用场景,适用于人工智能研究与实践。
2025-09-02 00:59:41
21
原创 22、扩展方法、流与抽象类:飞行仓库的实现
本文探讨了如何通过扩展方法解决代码耦合问题,提升代码的可维护性和可读性。同时介绍了如何避免魔法数字,使用常量提升代码清晰度,并详细描述了 FlightRepository 的实现过程,包括输入验证、数据库交互及异常处理。文章还通过单元测试确保代码的正确性,并展望了后续服务层的开发方向。
2025-09-01 13:56:20
原创 21、金属伪影减少:ADN方法的研究与实践
本文详细介绍了一种用于医学影像中金属伪影减少(MAR)的方法——ADN。该方法通过设计对抗损失、重建损失、伪影一致性损失和自减少损失,结合卷积神经网络和伪影金字塔解码(APD)架构,在无需配对数据的情况下有效减少金属伪影,同时保持解剖结构的精确性。实验结果表明,ADN在合成和临床数据集上均表现优异,优于传统方法、监督方法和现有的无监督方法。此外,ADN在临床诊断辅助、多模态影像融合及医学影像研究方面具有广阔的应用前景,为医学影像领域的发展提供了新的解决方案。
2025-09-01 13:50:56
19
原创 44、深度强化学习的实现技巧与常见算法
本博客详细介绍了深度强化学习的实现技巧与常见算法。内容涵盖了训练与调试的关键技巧,如策略初始化、探针添加、随机种子的应用、CPU与GPU资源的平衡等。同时,总结了多种常见的强化学习算法,包括基于离散和连续动作空间的算法,并分析了其特点与适用场景。此外,还提供了训练流程、资源平衡的具体操作步骤以及实践建议。适合希望深入了解深度强化学习的读者参考学习。
2025-09-01 09:18:16
31
原创 43、深度强化学习:Arena平台与实践技巧
本文介绍了使用Arena平台进行多智能体强化学习(MARL)的实践方法,包括智能体预制件的使用、导出二进制游戏进行训练、X-Server设置以及训练和可视化过程。同时,文章总结了深度强化学习的应用技巧,如从头实现算法、探索环境、选择合适的网络架构与奖励函数、处理非马尔可夫情况等。通过案例分析和详细流程图,帮助读者更好地理解如何在实际任务中应用深度强化学习技术。
2025-08-31 15:53:07
40
原创 21、数据库查询与存储库实现
本文详细介绍了在软件开发中如何实现数据库查询与存储库,包括机场对象的查询、飞行存储库的实现以及相关的单元测试。同时涵盖了参数验证、异常处理、代码复用性和可维护性等关键点,以确保代码的正确性和稳定性。
2025-08-31 13:49:15
原创 20、医学图像无监督伪影去除技术解析
本文探讨了无监督学习在医学图像重建和金属伪影去除中的应用,详细解析了Noise2Noise、Noise2Void和深度图像先验等自监督学习方法的原理及优缺点,并介绍了伪影分离网络(ADN)在无监督金属伪影去除中的实现与效果。这些方法在缺乏配对训练数据的情况下提供了有效的解决方案,尤其在临床应用中表现出色。
2025-08-31 12:13:57
19
原创 19、医学图像重建的无监督学习方法
本博文探讨了医学图像重建中的无监督学习方法,重点分析了在缺乏配对训练数据的临床场景下,如何利用条件生成对抗网络(cGAN)、CycleGAN 和自监督学习等技术实现高质量图像重建。文章介绍了无配对学习和自监督学习的设计原则,通过金属伪影去除的案例研究展示了方法的应用流程,并通过实验结果对比验证了无监督学习方法的有效性。同时,博文总结了无监督学习的优势与挑战,并展望了未来的发展方向,如模型优化、多模态融合和临床应用拓展。
2025-08-30 16:28:01
13
原创 42、Arena平台:多智能体强化学习的理想之选
本文介绍了Arena平台作为多智能体强化学习的理想选择,详细描述了其使用入门、简单单人和双人游戏的构建步骤,并深入探讨了奖励机制的设计和五种基本奖励方案(BMaRSs)。此外,文章还展示了如何通过社交树结构定义复杂的社交关系,并列举了实际应用中的注意事项。Arena平台凭借其灵活性和强大的功能,为多智能体强化学习的研究与开发提供了有力支持。
2025-08-30 15:47:01
36
原创 20、扩展方法、流与抽象类:机场仓库的实现与测试
本文详细介绍了在重构 FlyingDutchmanAirlines 项目中实现 AirportRepository 和 FlightRepository 的过程。内容涵盖使用流重定向捕获控制台输出、通过抽象类提供通用功能、应用扩展方法增强现有类型、使用 SortedList 进行有序数据存储、利用 LINQ 的 AddRange 方法批量添加元素,以及通过重构消除魔法数字。文章还展示了如何编写单元测试来验证代码逻辑,并讨论了异常处理与堆栈跟踪的维护。最终通过这些技术提升了代码质量与可维护性。
2025-08-30 09:11:59
原创 18、医学CT图像金属伪影减少的双域网络方法
本文提出了一种用于减少医学CT图像中金属伪影的双域网络方法。该方法通过正弦图增强网络(SE-Net)、Radon反演层(RIL)和图像增强网络(IE-Net)的联合学习,结合Radon一致性损失和掩码金字塔U-Net架构,实现了正弦图域和图像域的双域优化,有效抑制了金属阴影并恢复了图像细节。实验表明,该方法在定量指标(PSNR、SSIM)和运行效率方面均优于现有方法,为医学CT图像的高质量重建提供了新的解决方案。
2025-08-29 11:13:42
18
原创 19、条件语句、Func、开关语句与开关表达式在数据库单元测试中的应用
本文探讨了在数据库单元测试中如何使用条件语句、Func、开关语句和开关表达式来控制代码分支,实现对异常路径的测试。通过存根重写 SaveChangesAsync 方法,结合 CustomerID 控制执行逻辑,详细分析了不同实现方式的优缺点。同时,总结了可选参数、泛型、内存数据库清理等相关技术要点,并通过单元测试验证代码的正确性。文章旨在提高代码的可测试性、可维护性和健壮性。
2025-08-29 11:08:49
11
原创 41、机器人仿真学习与多智能体强化学习平台Arena
本博客主要探讨了机器人仿真学习与多智能体强化学习平台Arena的相关内容。在机器人仿真学习部分,以Sawyer机器人抓取任务为例,介绍了环境设置、奖励机制优化、并行训练策略以及领域随机化等技术,并讨论了如何提升机器人在仿真环境中的学习效率和泛化能力。同时介绍了RLBench这一大规模机器人学习基准平台及其构建框架。在多智能体强化学习部分,重点解析了Arena平台的核心功能,包括其奖励方案(孤立、竞争、协作、混合等)、环境构建工具、基线算法支持以及具体应用流程。博客总结了机器人仿真学习与多智能体强化学习的发展
2025-08-29 11:01:23
18
原创 18、编程中的对象初始化、单元测试与泛型应用
本文详细探讨了编程中的多个关键技术点,包括使用对象初始化器简化对象创建、单元测试中存根的应用、里氏替换原则的重要性、泛型编程和可选参数的使用等。通过具体代码示例,展示了如何在实际项目中应用这些概念来提高代码的可维护性、可测试性和类型安全性。同时,还介绍了如何在Entity Framework Core中添加预订到数据库以及在不同场景下如何优化代码结构。
2025-08-28 14:04:47
6
原创 17、医学影像重建:监督式伪影减少方法解析
本博文详细解析了两种医学影像中的伪影减少方法。首先介绍了一种基于生成对抗网络(GAN)的稀疏视图CBCT伪影减少方法,通过创新的网络架构设计(如多粒度判别器和焦点图)以及对抗损失与感知损失的结合,有效提升了图像质量并减少了伪影。其次,博文探讨了针对CT图像中金属伪影的DuDoNet方法,该方法采用双域学习策略(正弦图域和图像域),结合掩码金字塔U-Net、Radon反演层和Radon一致性损失,显著减少了金属伪影和二次伪影。两种方法均在实验中验证了其有效性,为医学影像重建提供了新的思路和技术支持。
2025-08-28 12:57:00
18
原创 40、模拟环境中的机器人学习
本文介绍了如何在CoppeliaSim模拟环境中使用深度强化学习算法进行机器人物体抓取任务。通过PyRep工具实现Python控制接口,详细讲解了模拟环境的搭建、机器人组装、控制脚本编写以及奖励函数设计。文章提供了完整的代码示例和环境配置流程,旨在帮助读者快速入门机器人强化学习领域,并为进一步研究模拟到现实的迁移方法打下基础。
2025-08-28 10:05:45
17
原创 16、医学图像重建中的监督式伪影减少技术
本文系统介绍了医学图像重建中监督式伪影减少技术的研究进展。重点探讨了图像域方法、传感器域方法和双域方法的设计原则与实现方式,并通过稀疏视图伪影减少和金属伪影减少两个案例研究展示了深度学习模型的实际应用效果。文章总结了各类方法的优缺点,并展望了未来在模型优化、多模态融合和临床应用等方面的发展方向,为提升医学图像重建质量提供了理论基础和实践参考。
2025-08-27 16:56:39
14
原创 17、C开发中的对象比较、存储库实现与输入验证
本文详细探讨了C#开发中的对象比较、存储库实现与输入验证等关键主题。通过练习题与示例代码,深入讲解了相等性比较、自定义异常、可空类型以及使用Entity Framework Core进行存储库开发的实践。重点强调了关注点分离、低耦合设计、日志记录与单元测试的重要性,并提供了完整的代码示例和最佳实践,帮助开发者构建高质量、可维护的应用程序。
2025-08-27 16:41:38
11
原创 39、深度强化学习:AlphaZero算法与机器人模拟学习
本文深入解析了AlphaZero算法和机器人模拟学习的核心内容。AlphaZero通过蒙特卡罗树搜索和深度神经网络的结合,在多种组合游戏中展现出强大的性能,验证了其通用性和稳定性。同时,文章探讨了机器人模拟学习的意义与挑战,介绍了在模拟环境中训练机器人策略的方法,以及如何将这些策略转移到现实世界应用。通过分析AlphaZero的实现细节和机器人学习的实际案例,展示了深度强化学习在游戏和机器人控制领域的巨大潜力。
2025-08-27 11:39:30
24
原创 21、中世纪文学与游戏研究领域的多元探索
本文探讨了中世纪文学与游戏研究领域的多元交叉,介绍了该领域部分研究人员及其学术背景。通过分析改编与中世纪主义的理论概念,结合角色扮演游戏和策略游戏的具体案例,揭示了游戏与文学、历史、性别文化之间的深层联系。此外,还展望了未来研究的方向,强调跨学科合作与技术创新的重要性。
2025-08-27 08:25:39
28
原创 15、2D/3D 医学图像配准:方法、实验与性能评估
本文介绍了一种快速且稳健的2D/3D医学图像配准方法,基于大规模CBCT数据集和X射线图像,提出了一种新颖的POINT2框架。该方法避免了传统迭代姿态搜索的高昂代价,通过建立2D术中图像和3D术前CT之间的点对应关系,结合三角测量层直接估计CT姿态。实验表明,该方法在配准精度、速度和鲁棒性方面均优于现有方法。同时,文章还对模型结构、POI选择策略、卷积层设计等关键技术点进行了深入分析,并指出了方法的局限性与未来改进方向。
2025-08-26 14:30:26
16
原创 38、深入理解AlphaZero算法:从组合游戏到蒙特卡罗树搜索
本文深入探讨了AlphaZero算法的核心原理及其在组合游戏中的应用,重点解析了蒙特卡罗树搜索(MCTS)的实现机制,并以五子棋为例展示了AlphaZero算法的具体应用流程。通过代码示例和算法流程分析,揭示了AlphaZero如何通过自我对弈达到超越人类表现的能力。文章旨在为读者提供对深度强化学习与游戏AI结合的全面理解,并展望其未来发展方向。
2025-08-26 11:02:25
22
原创 20、游戏世界的多元呈现与文化内涵解析
本文探讨了游戏世界的多元呈现及其丰富的文化内涵。从PC与主机游戏的经典案例,到社交与移动游戏的崛起,再到游戏与教育、历史、文学的结合,全面解析了游戏作为一种文化载体的多重价值。同时分析了游戏设计的核心要素、产业发展趋势、性别与身份呈现,以及游戏对社会和个人的影响。文章还展望了游戏在未来技术进步和内容创新方面的无限可能,为理解游戏的本质与未来发展提供了深入洞察。
2025-08-26 10:29:06
30
深度学习在医学影像中的应用
2025-09-06
自然语言处理入门指南
2025-09-03
边缘AI:从理论到实践
2025-09-02
深度强化学习实战指南
2025-09-02
AI与区块链技术前沿
2025-08-29
可再生能源与智能电网的融合与发展
2025-08-26
构建AI系统:架构与DevOps核心要素
2025-08-24
OpenCV 3计算机视觉实战指南
2025-08-21
Python编程实践:从入门到精通
2025-08-16
工业4.0时代的敏捷商业领导力
2025-08-15
电磁学的网格计算:理论与实践
2025-08-08
构建可持续且高度可扩展的事件驱动微服务
2025-07-29
学习HTML5与JavaScript构建iOS应用
2025-07-28
高级渗透测试:构建安全环境的实战指南
2025-07-25
多智能体系统中的适应性组织与协调机制
2025-07-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人