Mask_RCNN 环境配置及训练

目录

 一、Mask_RCNN代码及权重

1、源码下载

2、权重获取

二、环境配置 

1、创建虚拟环境

2、安装必要的包

三、测试环境

1、使用coco

2、使用balloon

四、测试

1、使用coco

2、使用balloon


 一、Mask_RCNN代码及权重

        均从github获取,以下是相关链接:

1、源码下载

matterport/Mask_RCNN: Mask R-CNN for object detection and instance segmentation on Keras and TensorFlowhttps://github.com/matterport/Mask_RCNN

2、权重获取

Releases · matterport/Mask_RCNNhttps://github.com/matterport/Mask_RCNN/releases分别获取两个权重文件(蓝框部分为测试用数据集)

 

 

二、环境配置 

1、创建虚拟环境

注意:使用的Python版本为3.6,因为所需库的版本并不都适配新版Python

conda create -n RCNN python=3.6

启动环境:

conda activate RCNN

2、安装必要的包

根据以下版本要求安装所需的库

numpy==1.19.5
scipy==1.2.1
pillow==8.2.0
cython==0.29.22
matplotlib==3.3.4
scikit-image==0.17.2
tensorflow==1.15.0
keras==2.2.5
opencv-python==4.3.0.38
h5py==2.10.0
imgaug
IPython[all]
pycocotools

注意: 因为在TensorFlow 1.x中,`tf.reduce_mean`的参数是`keep_dims`(带下划线),而在TensorFlow 2.x中改为`keepdims`(无下划线);`Keras==2.2.5` (与TF 1.x兼容) 而 `Keras==2.10.0` (与TF 2.x兼容)、`numpy==1.19.5` (TF 1.15兼容) 而 `numpy==1.23.5` (TF 2.x兼容)

所以版本过高、库之间版本不兼容会导致以下报错:

Traceback (most recent call last):
  File "balloon.py", line 364, in <module>
    train(model)
  File "balloon.py", line 199, in train
    layers='heads')
  File "E:\machine-vision\Mask_RCNN-master\mrcnn\model.py", line 2354, in train
    self.compile(learning_rate, self.config.LEARNING_MOMENTUM)
  File "E:\machine-vision\Mask_RCNN-master\mrcnn\model.py", line 2173, in compile
    tf.reduce_mean(layer.output, keepdims=True)
TypeError: reduce_mean() got an unexpected keyword argument 'keepdims'

三、测试环境

可以用coco数据集或balloon数据集进行测试,分别为:

1、使用coco

python coco.py train --dataset=/path/to/coco/ --model=E:/machine-vision/Mask_RCNN-master/mask_rcnn_coco.h5 --download=True

 数据集和权重文件位置自行调整,如不需要再下载数据,就把 --download=True 删掉或改为False

2、使用balloon

python balloon.py train --dataset="E:/machine-vision/dataset/balloon_dataset/balloon" --weights="E:/machine-vision/Mask_RCNN-master/mask_rcnn_balloon.h5"

训练的权重文件会保存在log文件夹下

四、测试

1、使用coco

python coco.py evaluate --dataset=/path/to/coco/ --model=last

2、使用balloon

python balloon.py splash --weights="E:/machine-vision/Mask_RCNN-master/mask_rcnn_balloon.h5" --image="E:/machine-vision/dataset/balloon_dataset/balloon/train/699765866_abaad7274d_b.jpg"

 

<think>好的,我现在需要帮助用户解决如何配置Mask R-CNN的运行环境的问题。用户提到了安装依赖和Python框架,可能对具体的步骤和常见问题不太清楚。我需要根据提供的引用内容,特别是引用[1]和[2],来组织回答。 首先,用户需要环境配置的教程,所以应该分步骤说明。引用[1]提到了PyTorch版的Mask R-CNN的目录结构和安装指南,引用[2]则提供了安装依赖和训练命令的例子。我需要结合这两部分信息。 第一步应该是安装基础依赖,比如Python版本、PyTorch、TorchVision等。需要确保版本兼容性,这可能是一个常见问题,用户可能会遇到版本不匹配的情况,所以需要特别说明版本要求。 接下来是克隆项目仓库,用户可能不熟悉如何从GitCode获取代码,所以给出具体的git命令和项目地址是必要的。同时,安装项目依赖,使用pip安装requirements.txt里的内容,这里可能需要处理依赖冲突,提醒用户注意虚拟环境的使用。 然后,编译CUDA扩展,这是Mask R-CNN性能优化的部分,用户可能对这一步不太熟悉,需要详细说明如何运行setup.py,并且确保CUDA和PyTorch版本匹配。如果编译失败,可能的原因包括CUDA版本不兼容或编译器问题,需要给出解决建议。 验证安装部分,用户可能需要确认是否安装成功,所以提供一个简单的测试命令,并解释预期结果。引用[2]中的训练命令可以作为例子,但用户当前可能只需要验证安装,所以可能不需要立即训练。 最后,常见问题部分需要预见到用户可能遇到的典型问题,比如CUDA错误、依赖冲突、编译失败等,并给出解决方案。这部分可以提升用户的体验,减少他们的后续困扰。 整个过程中需要保持结构清晰,步骤明确,同时引用标记要正确对应到参考文献。确保使用中文,并且数学公式或代码块符合格式要求。另外,生成的相关问题需要与环境配置相关,帮助用户深入了解更多内容。</think>### Mask R-CNN环境配置教程 #### 1. 安装基础依赖 - **Python 3.6+**(推荐3.7版本) - **PyTorch 1.8+** 和对应版本的TorchVision 使用以下命令安装(以CUDA 11.3为例): ```bash pip install torch==1.8.1+cu113 torchvision==0.9.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html ``` - **其他依赖库**: ```bash pip install cython opencv-python matplotlib scipy numpy tqdm ``` #### 2. 克隆项目仓库 ```bash git clone https://gitcode.com/gh_mirrors/py/pytorch-mask-rcnn.git cd pytorch-mask-rcnn ``` 项目目录结构通常包含`configs`(配置文件)、`model`(模型定义)、`tools`(训练/测试脚本)等关键文件夹[^1]。 #### 3. 安装项目依赖 ```bash pip install -r requirements.txt ``` 注意:若出现依赖冲突,建议使用虚拟环境(如`conda create -n maskrcnn python=3.7`)。 #### 4. 编译CUDA扩展(关键步骤) Mask R-CNN需要编译ROI对齐和NMS的CUDA加速模块: ```bash cd maskrcnn_benchmark python setup.py build develop ``` 编译成功后应输出`Finished processing dependencies for maskrcnn-benchmark==0.1`。 #### 5. 验证安装 运行简单测试命令: ```bash python tools/test_installation.py ``` 若输出`All checks passed!`则环境配置成功[^2]。 #### 常见问题 | 问题类型 | 解决方案 | |-------------------|-----------------------------------| | CUDA版本不匹配 | 检查PyTorch与CUDA版本对应关系 | | 依赖冲突 | 使用虚拟环境隔离 | | 编译错误 | 确保gcc版本≥5.0,CUDA路径正确配置 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸢想睡觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值