【AI 探索之旅:从基础认知到前沿突破的深度游五】Prompt Engineering 提示工程

前言

上一篇已经用OpenAI实现了简单的问答,细心的你可能发现了,我们在问大模型问题的时候,有时候回答得确实不尽人意,也可能根本就跟问题不相关,就是“一本正经的胡说八道”。针对这种情况,我们就需要给到它更多的提示,让它理解我们需要的是什么,所以就需要引入一个新的概念:提示工程。

提示工程的生态

1、什么是提示词

所谓的提示词其实指的就是提供给模型的一个文本片段,用于指导模型生成特定的输出或回答。提示词的目的是为模型提供一个任务的上下文,以便模型能够更准确地理解用户的意图,并生成相关的回应。

2、什么是提示工程(Prompt Engineering)

所谓的提示工程也可以被称为「指令工程」,
提示工程的核心思想是,通过精心设计的提示,可以显著提高模型的性能和输出质量。

  • 貌似简单,但其实意义非凡。(提问的智慧)
    • Prompt 是 AGI 时代的「编程语言」
    • 提示工程师是 AGI 时代的「程序员」

如果要学好提示工程,那么其实就是要知道如何对咱们的Prompt进行调优,与大模型进行更好的交互。

3、如何正确理解Engineering工程化

在这里插入图片描述
在这里插入图片描述

4、Prompt的典型构成要素

举个例子:
「输出一个九九乘法口诀表」
「请使用python语言 只能利用for循环不能使用其他的语法 输出一个九九乘法口诀表并写好相应的注释」
大家可以使用以上两个Propmt实例,分别体验一下gpt给我们的回答。
在这里插入图片描述

如果说想要设置一个高质量的prompt
简而言之:
具体、丰富、少歧义
延伸: 对于咱们生活中的短句 聊天记录 都不是好的Prompt 而国外在进行信息同步时 多采用邮箱的形式 格式统一是比较好的Propmt

对于一个高质量的Propmt 我们应该具有以下要素:

  • 指令:想要模型执行的特定任务或指令。
  • 上下文:包含外部信息或额外的上下文信息,引导语言模型更好地响应。
  • 输入数据:用户输入的内容或问题。
  • 输出指示:指定输出的类型或格式。

注意点: 并不是说我们构建一个Propmpt一定需要这四个要素!

5、设置Prompt的通用技巧

1)、具体性
2)、示例和格式
3)、避免不精确
4)、做还是不做?

"""1、具体性"""
prompt = '请使用python语言 只能利用for循环不能使用其他的语法 输出一个九九乘法口诀表并写好相应的注释'
def get_completion(prompt, model="gpt-4o-mini"):
    messages = [{
   
   "role": "user", "content": prompt}]
    response = client.chat.completions.create(
        model=model,
        messages=messages,
        temperature = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值