【CodeVS 2598】编辑距离问题

本文介绍了一种基于动态规划思想的编辑距离算法实现方法,通过构建二维动态规划矩阵,详细解释了四种基本操作(删除、插入、替换及字符匹配)如何影响两字符串之间的最小编辑距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题解
设的dp方程类似于最长公共子序列,设dp[i][j]表示成功匹配第一个字符串到i,第二个字符串到j的最小步数。
分析四种操作
1.删除一个元素:dp[i][j]dp[i1][j]+1 表示删除第一个串的第i个元素,让两串匹配成功只需要i1个元素和j匹配。
2.插入一个元素:dp[i][j]dp[i][j1]+1 表示第一个串的i位置之后插入一个和第二个串j位置相同的元素。
3.修改一个元素:dp[i][j]dp[i1][j1]+1 表示第一个串的i位置的元素修改为第二个串j位置的元素。
4.两个字符串的 i,j 位置相同:dp[i][j]dp[i1][j1] 直接从上一位继承而来。

#include <bits/stdc++.h>
using namespace std;
const int inf = 1e9;
char ch1[4010], ch2[4010];
int f[4010][4010];
int main(){
    scanf("%s%s", ch1+1, ch2+1);
    int len1 = strlen(ch1+1), len2 = strlen(ch2+1);
    for(int i = 0; i <= len1; i ++){
        for(int j = 0; j <= len2; j ++){
            int t = inf;
            if(i == 0 && j == 0) continue;
            if(i-1 >= 0 && j-1 >= 0) t = min(f[i-1][j-1]+1, t);
            if(i-1 >= 0) t = min(f[i-1][j]+1, t);
            if(j-1 >= 0) t = min(f[i][j-1]+1, t);
            if(ch1[i] == ch2[j] && i-1 >= 0 && j-1 >= 0) 
                t = min(t, f[i-1][j-1]);
            f[i][j] = t;
        }
    }
    printf("%d", f[len1][len2]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值