42、Tandem:动态自发聚类的上下文感知方法解析

Tandem:动态自发聚类的上下文感知方法解析

在网络节点聚类领域,上下文感知的聚类方法对于提高网络效率和稳定性至关重要。Tandem作为一种上下文感知的自发聚类方法,在动态网络环境中展现出了独特的优势。本文将深入探讨Tandem的原理、性能评估以及与传统聚类方法的比较。

1. 节点分配与置信度计算

在网络中,节点会根据共享上下文识别算法分配到不同的簇头。例如,在某个特定时刻,节点7未被分配,因为在之前的时间步中,共享上下文识别算法未将其与任何相邻簇头关联。节点4在当前时间步计算了与其他节点的置信度值,与同一主体上的节点置信度值在0.66 - 0.88之间,与其他主体上的节点置信度值在0.39 - 0.57之间。由于节点4与根节点1共享相同上下文的置信度为0.66且高于阈值,所以节点4保持当前根节点。若置信度低于阈值,节点4可能会变为未分配状态,或者分配到其他簇。

2. 簇稳定性分析
2.1 确定共同上下文

为了计算共享上下文正确检测的概率,我们引入随机变量。设网络中的节点v及其邻居节点u,若v和u不共享相同上下文,用随机变量X1(v, u)表示共享上下文识别算法计算的置信度值;若共享相同上下文,则用随机变量X2(v, u)表示。将实验中遇到的分布作为参考概率密度函数(PDF),分别将X1(v, u)与PDF ϕ1和累积分布函数(CDF) Φ1关联,X2(v, u)与PDF ϕ2和CDF Φ2关联。

节点v根据阈值T选择与其共享共同上下文的邻居子集,T为 ϕ1和 ϕ2的交点,可最小化错误判定概率之和。用p表示正确检测共同上下文的概率,q表示正确检测不同上下文的概率,计算公式如下:
[
p =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值