COVID-19封锁限制对空气质量的影响分析
1. 气候因素对污染物浓度的影响
气候因素在降低污染物浓度方面起着重要作用。变量的季节性通过估计符号的交替及其各自的显著性得到了很好的定义。例如,在春季和夏季,系数通常为负值且往往具有显著性,这表明气候因素在温暖时期降低污染物浓度方面的作用较强。
温度和风力全年都是降低氧化物浓度的最重要因素。除夏季外,70%的监测站中温度被选为具有负显著影响的因素,而在30% - 40%的模型中,风力被估计为具有显著的负影响。尽管伦巴第地区的风力通常较弱,但从东部和北部吹来的风尤为重要。湿度除了在夏季对降低污染物浓度有显著贡献外,其他时候常被认为影响较小。而累积降雨量在冬季对降低污染物浓度起着关键作用。
2. 模型拟合与诊断检查
为了评估估计和模型拟合的优劣,对多个拟合优度指标进行了分析,包括样本内调整后的R平方(R²)指数、残差均方根误差(RMSE)和修正的赤池信息准则(AICc)。对于74个监测站而言,模型拟合情况令人满意。大多数模型的R²高于80%,RMSE低于6 µg/m³,最小拟合优度值也高于65%,这表明模型能够解释大部分的变异。
同时,拟合较好的模型预测误差也较低,R²指数和预测误差的表现相互一致,R²指数较高且RMSE较低的模型AICc值也最小。从拟合的角度来看,通过ML后LASSO估计器进行估计的策略是对所选样本中NO₂浓度进行正确建模的合适工具。
为了验证模型AR(1)结构的假设,对残差进行了多项诊断检查。通过图形和分析方法检查残差的序列相关性,样本自相关函数(ACF)和估计的自相关测试结果显示,在74个监测站中,55个站的Ljung - Box检验p值高于5%,64