弱等价理论:规则、应用与限制
1. 弱等价与相关概念
弱等价是经典等价概念的推广。若两个公式被相同的值满足,则它们等价;若它们在一组变量 $X$ 上等价,即它们在 $X$ 上的投影等价,则它们是弱等价的。在 $X$ 上投影时,其余变量会被存在量化,所以弱等价是隐式量化公式之间的等价关系。
相关定义如下:
- 语言与符号 :设 $C$ 是一种固定语言,包含常量 $CON$(如 $a, b, c$ 等)、变量 $VAR$(如 $x, y, z$ 等)、谓词(如 $R, S, T$ 等)和函数(如 $f, g$ 等)。项(如 $s, t$ 等)、原子(如 $p, q$ 等)和公式 $FORM$(如 $\varphi$ 等)按常规方式构造。$TRUE$ 和 $FALSE$ 是命题常量,$FV(\varphi)$ 或 $\alpha(\varphi)$ 是公式 $\varphi$ 的自由变量集。
- 解与解集 :解是方程 $x = t$ 且 $x \in \alpha(t)$。解集 $\$ 是有限个独立解的集合 ${x_1 = t_1, \ldots, x_n = t_n}$,即所有头变量 $\alpha_H(\$)$ 彼此不同,且与尾变量 $\alpha_T(\$)$ 不同。
- 元组 :元组 $r \in R$ 被定义为部分变量赋值 $\alpha(R) \to V$,从现在起,$r$ 表现为具有常量尾部的解集,即 ${x_1 = c_1, \ldots, x_k = c_k}$,或等价地表示为合取式 $\bigwedge_{i = 1}^{k} x_i = c_