逻辑推理规则与符号约束求解详解
1. 强推理规则与经典逻辑
1.1 基本规则介绍
在逻辑推理中,有一系列重要的规则,如下表所示:
| 名称 | 规则 |
| — | — |
| reflexivity | <p \= <p |
| augmentation |
\
true |= *0 | | transparency | true |= u = v => p(u) |= p(v) |
| symmetry | x = y \= y = x |
这些规则是后续推理的基础,它们之间相互关联,构成了一个完整的逻辑推理体系。
1.2 规则推导
这些规则都可以从 SI 规则中推导得出。例如:
- reflection :ES = 0,通过简单的逻辑自反性可得。
- weakening :p A ip \= ip,这是根据逻辑的弱化原则。
- idem potency :p |= p,体现了逻辑的自等性。
1.3 与经典逻辑的关系
强推理规则系统实际上是无量化的经典谓词逻辑的一种变体。我们可以从 SI 规则推导出所有相关的规则和公理,以及一组理想的规则。这些推导不仅证明了它们在前面推理中的合理性,更重要的是,展示了该系统与无量化谓词逻辑的紧密联系。
例如,我们可以推导出以下命题逻辑的规则和公理:
| 名称 | 规