13、深度学习中的微积分:从偏导数到矩阵微积分

深度学习中的微积分:从偏导数到矩阵微积分

1. 偏导数:多变量函数的导数

在处理多变量函数时,我们需要引入偏导数的概念。之前我们主要关注单变量函数 (f(x)) 的导数,现在考虑多变量函数,如 (f(x, y)) 或 (f(x_0, x_1, x_2, \ldots, x_n))。

偏导数的计算方法是:在计算关于某一个变量的偏导数时,将其他变量视为常数。例如,对于函数 (f(x, y) = xy + \frac{x}{y}),我们可以计算两个偏导数:
- 关于 (x) 的偏导数:(\frac{\partial f}{\partial x}=y+\frac{1}{y})
- 关于 (y) 的偏导数:(\frac{\partial f}{\partial y}=x - \frac{x}{y^2})

再看一个例子,对于函数 (f(x, y, z) = x^2 + y^2 + z^2 + 3xyz),其偏导数分别为:
- (\frac{\partial f}{\partial x}=2x + 3yz)
- (\frac{\partial f}{\partial y}=2y + 3xz)
- (\frac{\partial f}{\partial z}=2z + 3xy)

混合偏导数

就像单变量函数的导数一样,我们可以对偏导数再求偏导数,这就是混合偏导数。例如,对于函数 (f(x, y, z, t)),如果先求关于 (z) 的偏导数 (\frac{\partial f}{\partial z}),它仍然是关于 (x, y, z, t) 的函数,我们可以继续求关于其他变量的偏导数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值