神经网络数据处理与反向传播算法详解
1. 神经网络的数据处理
神经网络在处理数据时,不同类型的网络有着不同的数据传递方式。传统神经网络中,数据以向量的形式在各层之间传递;而深度网络中,数据通常以四维张量的形式传递。
1.1 数据呈现方式
可以将数据作为特征向量或多维输入呈现给网络。在传统神经网络中,数据以向量形式从一层传递到另一层,这种传递过程本质上是矩阵 - 向量的乘法和加法运算。
1.2 深度卷积网络的数据传递
深度卷积网络通过卷积层和池化层处理数据。卷积操作是其核心,输入的每个样本以 3D 张量的形式在各层之间传递。用于分类的卷积神经网络(CNN)顶部通常是全连接层,其工作方式与传统神经网络中的全连接层相同。
1.3 输入图像在 CNN 中的处理
输入图像在 CNN 中经过一系列处理后产生输出表示,从而使网络能够正确标记输入。这一过程涉及到网络在训练中对图像特征的提取,与人类自然观察图像的方式可能有所不同。
2. 反向传播算法概述
反向传播是深度学习的核心算法,没有它,就难以在合理的时间内训练深度神经网络。因此,深度学习从业者需要了解反向传播的原理、它在训练过程中的作用以及如何实现它。
2.1 反向传播的定义
训练神经网络本质上是一个优化问题,涉及到损失函数。损失函数是网络权重和偏置的函数,用于衡量网络在训练集上的性能。我们的目标是通过梯度下降法最小化损失函数。为了实现这一目标,需要知道每个权重和偏置对损失函数的贡献,即 ∂L/∂w。反向传播算法就是用来计算这些偏导数的。