图的基本表示
- 图的本体设计
- 图的种类(有向、无向、异质、二分、连接带权重)
- 节点连接数
- 图的基本表示-邻接矩阵
- 图的基本表示-连接列表和邻接列表
- 图的连通性
图的基本表示
Objects:nodes,vertices N
Interactions:links,edges E
System:network,grph G(N,E)
图的种类
- 无向图
- 有向图
- 异质图 G=(V,E,RT)
- 二分图(特殊的异质图)
图的表示
图的矩阵表示:邻接矩阵
把图表示成矩阵就相当于翻译成了计算机语言
图的基本表示
- 连接列表
- 邻接列表
- 其他种类的图
** self-edges - multigraph
连通性
Connected(undirected) graph
在有向图中,任意两个节点可以相互触达
传统图机器学习(人工特征工程+机器学习)
图机器学习基本任务
- 节点层面
- 连接层面
- 子图/全图层面
节点、连接、子图、全图都可以有特征
节点层面的特征工程
节点连接数
节点重要度
节点抱团系数
节点中心度/重要度
节点的局部邻域拓扑连接结构
连接层面的特征工程
通过已知连接补全未知连接
直接提取link的特征,把link变成D维向量
把link两端的节点的D维向量拼在一起,丢失了link本身的连接结构信息
全图层面的特征工程
提取出的特征应反映全图结构的特点
把图看作文章,把节点看作单词
两个区别
- 可以存在孤立节点
- 计数全图Graphlet个数而非特定节点邻域Graphlet个数