【Datawhale图机器学习】第二章图的基本表示及特征工程

文章探讨了图的不同类型,如无向图、有向图和异质图,以及它们的表示方法,包括邻接矩阵和邻接列表。此外,还涉及图的连通性概念以及在节点、连接和全图层面进行特征工程的方法,如节点重要度、连接的特征提取和全图结构的反映。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图的基本表示

  • 图的本体设计
  • 图的种类(有向、无向、异质、二分、连接带权重)
  • 节点连接数
  • 图的基本表示-邻接矩阵
  • 图的基本表示-连接列表和邻接列表
  • 图的连通性

图的基本表示

Objects:nodes,vertices N
Interactions:links,edges E
System:network,grph G(N,E)

图的种类

  • 无向图
  • 有向图
  • 异质图 G=(V,E,RT)
  • 二分图(特殊的异质图)

图的表示

图的矩阵表示:邻接矩阵
把图表示成矩阵就相当于翻译成了计算机语言

图的基本表示

  • 连接列表
  • 邻接列表
  • 其他种类的图
    ** self-edges
  • multigraph

连通性

Connected(undirected) graph
在有向图中,任意两个节点可以相互触达

传统图机器学习(人工特征工程+机器学习)

图机器学习基本任务

  • 节点层面
  • 连接层面
  • 子图/全图层面

节点、连接、子图、全图都可以有特征

节点层面的特征工程

节点连接数
节点重要度
节点抱团系数

节点中心度/重要度
节点的局部邻域拓扑连接结构

连接层面的特征工程

通过已知连接补全未知连接
直接提取link的特征,把link变成D维向量
把link两端的节点的D维向量拼在一起,丢失了link本身的连接结构信息

全图层面的特征工程

提取出的特征应反映全图结构的特点
把图看作文章,把节点看作单词
两个区别

  • 可以存在孤立节点
  • 计数全图Graphlet个数而非特定节点邻域Graphlet个数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值