Memory-R1框架通过两个强化学习微调代理解决LLM记忆问题:内存管理器动态更新外部记忆库(添加、更新、删除或忽略信息),答案代理过滤无关记忆生成高质量答案。该框架无需人工标注内存操作,通过试错学习优化任务性能,有效解决了传统RAG系统噪音干扰问题,使大模型能更智能地管理记忆并提升回答准确性。
大型语言模型(LLM)目前在聊天机器人、编码助手、问题解答、创意写作等等应用方面取得了巨大的成功。
但是,每个查询到达LLM之前没有记忆的,固定上下文窗口(context windows),意味着他们无法在长时间的对话或多会话任务中积累持久的知识,并且很难推理复杂的历史。
最近的解决方案,如检索增强生成(RAG),将过去的信息附加到提示中,但这通常会导致嘈杂的,未经过滤的上下文,用太多无关的细节或缺失的关键事实淹没模型
Memory-R1框架,通过LLM代理学习主动管理和利用外部内存,决定在回答问题时添加、更新、删除或忽略什么,并过滤掉噪音。
为什么学习记忆
在RAG系统检索信息过程中,不相关的条目会污染推理,模型被噪音分散注意力。
相比之下,人类广泛检索,随后有选择地过滤重要的东西,才是我们需要的信息。
然而大多数人工智能记忆系统是静态的,是依靠手工制作的启发式来记住什么,而不是从反馈中学习,这带来了巨大的局限性。
Memory-R1 框架
Memory-R1 围绕两个专门的 RL 微调代理构建:
- 内存管理器 :决定每次对话转动后要执行哪些内存操作(ADD、UPDATE、DELETE、NOOP ) , 动态更新外部内存库。
- 答案代理 :对于每个用户问题,检索多达60个候选记忆,distills将它们提炼成最相关的子集,然后通过此过滤上下文来生成答案。
这两个组件都使用强化学习RL(使用近端策略优化(PPO)或组相对策略优化(GRPO))进行训练,仅以问题回答正确性为奖励信号。这意味着:代理不需要手动标记的内存操作,而是通过试错来学习,优化最终任务性能。
内存管理器:学习编辑知识
每次对话后,LLM都会提取关键事实。然后内存管理器从内存库中检索相关条目,并选择操作:
- 添加 : 插入尚未存在的新信息。
- 更新 :在现有记忆中合并新细节,当它们详细阐述或提炼以前的事实时。
- 删除 :删除过时或矛盾的信息。
- NOOP :如果添加任何相关内容,则保持内存不变。
内存管理器根据答案代理从新编辑的内存库生成的答题质量进行更新。如果内存操作使 Answer Agent 能够准确响应,则内存管理器将获得正值奖励。outcome-driven reward这种结果驱动的奖励消除了对内存操作进行昂贵的手动注释的需求。
示例 :当用户第一次提到收养一只名叫Buddy的狗时,然后补充说他们收养了另一只名为Scout的狗,系统可能会删除“Buddy”并添加“Scout”,将其视为矛盾。然而,updates RL训练的内存管理器更新了内存:“收养了两只狗,Buddy和Scout”,保持了一个连贯的,不断发展的知识库。
答案代理:选择性推理
对于每个问题,系统使用RAG检索多达60个候选记忆。但是,答案代理并没有将所有这些内容都输入到LLM。 首先蒸馏了该集合,只保留最相关的条目。只有这样,它才能产生答案。
训练 : 答案代理也使用RL进行训练exact match,使用其答案和标准答案之间的精确匹配作为奖励。filtering out noise****这鼓励它专注于过滤噪音和推理在高质量的上下文。
示例 : 询问“约翰住在海滩或山脉附近吗 ? ” , 香草LLM可能会输出“山 ” , 受到不相关记忆的影响。然而,Memory-R1的Answer Agent在回答之前只显示与海滩相关的条目,从而得出正确的“海滩”响应。
大模型未来如何发展?普通人能从中受益吗?
在科技日新月异的今天,大模型已经展现出了令人瞩目的能力,从编写代码到医疗诊断,再到自动驾驶,它们的应用领域日益广泛。那么,未来大模型将如何发展?普通人又能从中获得哪些益处呢?
通用人工智能(AGI)的曙光:未来,我们可能会见证通用人工智能(AGI)的出现,这是一种能够像人类一样思考的超级模型。它们有可能帮助人类解决气候变化、癌症等全球性难题。这样的发展将极大地推动科技进步,改善人类生活。
个人专属大模型的崛起:想象一下,未来的某一天,每个人的手机里都可能拥有一个私人AI助手。这个助手了解你的喜好,记得你的日程,甚至能模仿你的语气写邮件、回微信。这样的个性化服务将使我们的生活变得更加便捷。
脑机接口与大模型的融合:脑机接口技术的发展,使得大模型与人类的思维直接连接成为可能。未来,你可能只需戴上头盔,心中想到写一篇工作总结”,大模型就能将文字直接投影到屏幕上,实现真正的心想事成。
大模型的多领域应用:大模型就像一个超级智能的多面手,在各个领域都展现出了巨大的潜力和价值。随着技术的不断发展,相信未来大模型还会给我们带来更多的惊喜。赶紧把这篇文章分享给身边的朋友,一起感受大模型的魅力吧!
那么,如何学习AI大模型?
在一线互联网企业工作十余年里,我指导过不少同行后辈,帮助他们得到了学习和成长。我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑。因此,我坚持整理和分享各种AI大模型资料,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频。
学习阶段包括:
1.大模型系统设计
从大模型系统设计入手,讲解大模型的主要方法。包括模型架构、训练过程、优化策略等,让读者对大模型有一个全面的认识。
2.大模型提示词工程
通过大模型提示词工程,从Prompts角度入手,更好发挥模型的作用。包括提示词的构造、优化、应用等,让读者学会如何更好地利用大模型。
3.大模型平台应用开发
借助阿里云PAI平台,构建电商领域虚拟试衣系统。从需求分析、方案设计、到具体实现,详细讲解如何利用大模型构建实际应用。
4.大模型知识库应用开发
以LangChain框架为例,构建物流行业咨询智能问答系统。包括知识库的构建、问答系统的设计、到实际应用,让读者了解如何利用大模型构建智能问答系统。
5.大模型微调开发
借助以大健康、新零售、新媒体领域,构建适合当前领域的大模型。包括微调的方法、技巧、到实际应用,让读者学会如何针对特定领域进行大模型的微调。
6.SD多模态大模型
以SD多模态大模型为主,搭建文生图小程序案例。从模型选择、到小程序的设计、到实际应用,让读者了解如何利用大模型构建多模态应用。
7.大模型平台应用与开发
通过星火大模型、文心大模型等成熟大模型,构建大模型行业应用。包括行业需求分析、方案设计、到实际应用,让读者了解如何利用大模型构建行业应用。
学成之后的收获👈
• 全栈工程实现能力:通过学习,你将掌握从前端到后端,从产品经理到设计,再到数据分析等一系列技能,实现全方位的技术提升。
• 解决实际项目需求:在大数据时代,企业和机构面临海量数据处理的需求。掌握大模型应用开发技能,将使你能够更准确地分析数据,更有效地做出决策,更好地应对各种实际项目挑战。
• AI应用开发实战技能:你将学习如何基于大模型和企业数据开发AI应用,包括理论掌握、GPU算力运用、硬件知识、LangChain开发框架应用,以及项目实战经验。此外,你还将学会如何进行Fine-tuning垂直训练大模型,包括数据准备、数据蒸馏和大模型部署等一站式技能。
• 提升编码能力:大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握将提升你的编码能力和分析能力,使你能够编写更高质量的代码。
学习资源📚
- AI大模型学习路线图:为你提供清晰的学习路径,助你系统地掌握AI大模型知识。
- 100套AI大模型商业化落地方案:学习如何将AI大模型技术应用于实际商业场景,实现技术的商业化价值。
- 100集大模型视频教程:通过视频教程,你将更直观地学习大模型的技术细节和应用方法。
- 200本大模型PDF书籍:丰富的书籍资源,供你深入阅读和研究,拓宽你的知识视野。
- LLM面试题合集:准备面试,了解大模型领域的常见问题,提升你的面试通过率。
- AI产品经理资源合集:为你提供AI产品经理的实用资源,帮助你更好地管理和推广AI产品。
👉获取方式: 😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】