AI Agent原理详解:从文本补全到自主思考的技术演进

这篇文章系统介绍了AI Agent的发展历程与技术原理。从LLM的文本补全基础开始,阐述了Function Call和MCP协议如何赋予AI工具使用能力,以及记忆管理和ReAct框架如何实现智能体的思考决策过程。文章探讨了Workflow、多Agent系统和推理模型等形态,展望了"模型即产品"的发展新阶段。AI Agent正从简单文本生成进化为能自主规划、使用工具并协作完成复杂任务的智能体,尽管仍面临幻觉、可靠性等挑战,但其技术演进正深刻改变人机交互方式。


🤔说到AI Agent,现在真是满天飞的概念。。。

距离DeepSeek R1发布已经过了半年了,这半年各种AI Agent、每周都在进行AI革命,我都看麻了。

2017LLM起源->2025Agent发展时间线

回想起过年期间R1刚出世,那个“深度思考”的界面看得我都入迷了。我就在想,我们天天在用的各种AI工具,从ChatGPT到各种智能助手,背后到底是个什么原理?

今天就来聊聊这个话题吧。不过别指望我能讲得多专业,就是想到哪说到哪。。。😎

先搞清楚,什么是真正的AI Agent

很多人把所有能聊天的AI都叫Agent,这其实。。。怎么说呢,有点像把所有会跑的东西都叫汽车一样。

真正的AI Agent应该是这样的:大模型 + 记忆 + 使用工具 + 自主规划

就像你的朋友一样,能记住你们聊过什么,会用各种工具帮你解决问题,还能自己想办法规划怎么做。

比如说。。。你问一个普通的聊天机器人:“帮我查查明天北京的天气,然后推荐几套搭配。”

普通的AI可能就回答:“抱歉😑,我无法获取实时天气信息。”

但真正的Agent会这样:先去查天气API,发现明天下雨降温,然后结合你的穿衣风格和衣柜记录,给你推荐保暖又不会淋湿的搭配方案。

这就是区别。

LLM:一切的起点

说到Agent,得先聊聊LLM(大语言模型)。

其实LLM的工作方式特别简单粗暴:文本补全

你给它一段话:“今天天气真不错”,它就会接下去:“适合出门散步,心情也跟着明朗起来。。。”

就这样。一次输入,一次输出,然后结束。🙌

但就是这么简单的机制,却能做诗、翻译、写代码。。。真是挺神奇的。

不过问题也很明显:它没记忆,不会用工具,更不会主动规划。每次都是白纸一张,你说什么它回什么。

这就是为什么我们需要Agent的原因了。

Function Call:让AI学会“干活”

大模型本质上只能输出文字,那它怎么“使用工具”呢?

其实挺巧妙的。就是让大模型在文字里说明要用什么工具,然后程序去执行。

比如你问:“北京今天天气如何?”

大模型会输出类似这样的指令:

{
  “function”: “get_weather”,
  “parameters”: {
    “city”: “北京”
  }
}

然后系统解析这个指令,调用时间查询接口,把结果返回给大模型,最后大模型再整理成自然语言告诉你。

大模型按照提示词中的工具调用规范,返回实际的工具进行搜索并回复结果

OpenAI把这套机制预训练到模型里,叫Function Call。现在主流的大模型基本都支持了。

说实话,刚看到这个设计的时候我还挺惊讶的。。。💭原来AI“使用工具”是这么实现的。

MCP:工具调用的“万能转接头”

不过每次都要自己写工具接口,确实挺麻烦的。

Anthropic(就是Claude的那家公司)在去年底推出了MCP协议,相当于给Agent准备了一个“万能转接头”。💱

以前要让Agent读文件、查数据库、调搜索,每个都要单独开发。现在有了MCP,就像插USB一样,即插即用。

这个协议现在已经成了事实标准,几乎所有的厂商都在跟进。

不得不说,有了标准化的工具调用协议,开发Agent确实方便多了。

记忆:让AI“记住”你是谁

记忆能力可能是Agent最重要的特征之一了。

想象一下,如果你每天醒来都不记得昨天发生了什么,那得多可怕?但早期的AI就是这样,每次对话都是重新开始。

最简单的做法是把聊天记录都塞到输入里,但很快就会遇到token限制的问题。后来又有各种优化方案,比如只保留最近几轮对话,或者用向量搜索来找相关的历史记录。

现在大模型的上下文窗口越来越大,最新的已经能支持1000万token了。但是新问题又来了。。。上下文太长,模型的注意力就会分散,可能会忽略掉重要信息。

这就像。。。你同时听1000个人说话,最后可能一句都记不住。

所以对于多轮对话的记忆管理到现在还是个挺复杂的工程问题。不过好在有各种技术方案在不断优化。🤝

典型场景:AI智能客服,需要对用户的问题进行意图识别,来针对性回答,并存储为短期或长期记忆

ReAct:思考-行动-观察的循环

有了记忆和工具,Agent还需要学会“思考”。

ReAct框架就是教Agent怎么工作的标准流程:

  1. 思考(Thought):接到任务后,先想想下一步该做什么
  2. 行动(Action):执行具体的工具调用
  3. 观察(Observation):看看执行结果怎么样
  4. 决策:如果还没完成,继续下一轮循环

这个流程是不是很像人类做事的方式?先想想,然后试试,看看效果,再决定下一步。

现在大部分的Agent系统都是基于ReAct模式的,包括用OpenAI Function Call做的Agent。

Workflow:固化流程提升稳定性

Agent不稳定怎么办?那就把流程固化下来。🔗🔗🔗

这就是Workflow的思路。把复杂任务拆解成固定的步骤,每个步骤用AI来完成,但整体流程是预先设计好的。

就像工厂的生产线一样,虽然失去了一些灵活性,但稳定性大大提升。

现在很多可视化的AI开发平台都是这个思路,拖拖拽拽就能搭建一个AI应用。

典型的是问答工作流,根据不同的问题,从对应的知识库中寻找答案。

不过这种方式更像是“工作流+LLM”,跟真正的Agent还是有区别的。

多Agent:团队协作的力量

单个Agent搞不定复杂任务怎么办?那就搞个团队呗。

多Agent系统就是让不同的Agent扮演不同角色,比如:

  • 产品经理Agent负责需求分析
  • 工程师Agent负责写代码
  • 测试Agent负责找bug
  • 项目经理Agent负责协调

听起来很美好,但实际落地的时候问题也不少。。。

根据伯克利的研究,多Agent系统失败的原因主要是:角色定义不清、沟通效率低下、任务验证不完整。

说白了,Agent也会像人一样“踢皮球”、“跑题”、“知行不一”。

这让我想起了一个段子:本来想用AI提升效率,结果发现还得管理一群“数字员工”的办公室政治。。。

推理模型:Agent的新形态

去年O1的出现让大家眼前一亮。‼️

这个模型的工作方式很有意思:在回答问题之前,先进行一段“内部思考”,然后基于思考结果生成最终答案。

这种工作方式简直就像Agent一样,所以我把它叫做“类Agent”模型。

后来DeepSeek R1开源后,大家才看到这种“深度思考”的具体内容。那些思考过程读起来还挺有意思的,感觉AI真的在认真琢磨问题。

推理模型的思考过程是通过思维链来实现

现在这种两段式输出已经成了标配,连传统的Agent系统都开始模仿这种交互方式。

模型即产品:下半场的游戏规则

OpenAI的Deep Research可能标志着Agent进入了新阶段。

以前做Agent需要写代码、调接口、处理各种边界情况。现在OpenAI告诉我们:这些都不需要了,直接训练一个专门做研究的Agent模型就行。

这就是“模型即产品”的概念。针对特定场景,通过强化学习训练出专用的Agent模型,不需要复杂的工程实现。

这个思路确实很颠覆。。。以前是用工程手段实现Agent,⏩现在是直接训练Agent能力。

不过短期内,传统的工程化Agent应该还有生存空间。毕竟训练专用模型的成本摆在那里,不是所有场景都值得这么做。

写在最后

从最初的文本补全,到现在能自主思考、使用工具、协作完成复杂任务的智能体,AI的进化速度真的让人眼花缭乱。

有时候想想,我们可能正在见证一个新时代的开端。就像当年蒸汽机、电力、互联网改变世界一样,AI Agent可能也会重新定义我们的工作和生活方式。

不过说实话,现在的Agent还远没有到完美的程度。幻觉问题、记忆管理、可靠性。。。这些挑战依然存在。

但这不是拒绝拥抱变化的理由。

每一次技术革命都会让一些人焦虑,但最终都会创造出新的机会和可能性。关键是要跟上节奏,学会和AI协作,而不是对抗。

毕竟,我们的征程是星辰大海,不是吗?


学习大模型 AI 如何助力提升市场竞争优势?

随着新技术的不断涌现,特别是在人工智能领域,大模型的应用正逐渐成为提高社会生产效率的关键因素。这些先进的技术工具不仅优化了工作流程,还极大地提升了工作效率。然而,对于个人而言,掌握这些新技术的时间差异将直接影响到他们的竞争优势。正如在计算机、互联网和移动互联网的早期阶段所展现的那样,那些最先掌握新技术的人往往能够在职场中占据先机。

掌握 AI 大模型技能,不仅能够提高个人工作效率,还能增强在求职市场上的竞争力。在当今快速发展的技术时代,大模型 AI 已成为推动市场竞争力的重要力量。个人和企业必须迅速适应这一变化,以便在市场中保持领先地位。

如何学习大模型 AI ?

在我超过十年的互联网企业工作经验中,我有幸指导了许多同行和后辈,并帮助他们实现个人成长和学习进步。我深刻认识到,分享经验和知识对于推动整个行业的发展至关重要。因此,尽管工作繁忙,我仍然致力于整理和分享各种有价值的AI大模型资料,包括AI大模型入门学习思维导图、精选学习书籍手册、视频教程以及实战学习等内容。通过这些免费的资源,我希望能够帮助更多的互联网行业朋友获取正确的学习资料,进而提升大家的技能和竞争力。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
在这里插入图片描述

一、初阶应用:建立AI基础认知

在第一阶段(10天),重点是对大模型 AI 的基本概念和功能进行深入了解。这将帮助您在相关讨论中发表高级、独特的见解,而不仅仅是跟随他人。您将学习如何调教 AI,以及如何将大模型与业务相结合。

主要学习内容:

  • 大模型AI的功能与应用场景:探索AI在各个领域的实际应用
  • AI智能的起源与进化:深入了解AI如何获得并提升其智能水平
  • AI的核心原理与心法:掌握AI技术的核心概念和关键原理
  • 大模型应用的业务与技术架构:学习如何将大模型AI应用于业务场景和技术架构中
  • 代码实践:向GPT-3.5注入新知识的示例代码
  • 提示工程的重要性与核心思想:理解提示工程在AI应用中的关键作用
  • Prompt的构建与指令调优方法:学习如何构建有效的Prompt和进行指令调优
  • 思维链与思维树的应用:掌握思维链和思维树在AI推理和决策中的作用
  • Prompt攻击与防范策略:了解Prompt攻击的类型和如何进行有效的防范
    在这里插入图片描述
    在这里插入图片描述
    、、、

二、中阶应用:深入AI实战开发

在第二阶段(30天),您将进入大模型 AI 的进阶实战学习。这将帮助您构建私有知识库,扩展 AI 的能力,并快速开发基于 agent 的对话机器人。适合 Python 和 JavaScript 程序员。

主要学习内容:

  • RAG的重要性:理解RAG在AI应用中的关键作用
  • 构建基础ChatPDF:动手搭建一个简单的ChatPDF应用
  • 检索基础:掌握信息检索的基本概念和原理
  • 理解向量表示:深入探讨Embeddings的原理和应用
  • 向量数据库与检索技术:学习如何使用向量数据库进行高效检索
  • 基于 vector 的 RAG 实现:掌握基于向量的RAG构建方法
  • RAG系统的高级扩展:探索RAG系统的进阶知识和技巧
  • 混合检索与RAG-Fusion:了解混合检索和RAG-Fusion的概念和应用
  • 向量模型的本地部署策略:学习如何在本地环境中部署向量模型
    在这里插入图片描述

三、高阶应用:模型训练

在这个阶段,你将掌握模型训练的核心技术,能够独立训练和优化大模型AI。你将了解模型训练的基本概念、技术和方法,并能够进行实际操作。

  • 模型训练的意义:理解为什么需要进行模型训练。
  • 模型训练的基本概念:学习模型训练的基本术语和概念。
  • 求解器与损失函数:了解求解器和损失函数在模型训练中的作用。
  • 神经网络训练实践:通过实验学习如何手写一个简单的神经网络并进行训练。
  • 训练与微调:掌握训练、预训练、微调和轻量化微调的概念和应用。
  • Transformer结构:了解Transformer的结构和原理。
  • 轻量化微调:学习如何进行轻量化微调以优化模型性能。
  • 实验数据集构建:掌握如何构建和准备实验数据集。
    在这里插入图片描述
    在这里插入图片描述

四、专家应用:AI商业应用与创业

在这个阶段,你将了解全球大模型的性能、吞吐量和成本等方面的知识,能够在云端和本地等多种环境下部署大模型。你将找到适合自己的项目或创业方向,成为一名被AI武装的产品经理。

  • 硬件选型:学习如何选择合适的硬件来部署和运行大模型AI。
  • 全球大模型概览:了解全球大模型的发展趋势和主要玩家。
  • 国产大模型服务:探索国产大模型服务的优势和特点。
  • OpenAI代理搭建:学习如何搭建OpenAI代理以扩展AI的功能和应用范围。
  • 热身练习:在阿里云 PAI 上部署 Stable Diffusion
  • 本地化部署:在个人计算机上运行大型模型
  • 私有化部署策略:大型模型的内部部署方法
  • 利用 vLLM 进行模型部署:高效部署大型模型的技术
  • 案例分析:如何在阿里云上优雅地私有部署开源大型模型
  • 开源 LLM 项目的全面部署:从零开始部署开源大型语言模型
  • 内容安全与合规:确保AI应用的内容安全和合规性
  • 算法备案流程:互联网信息服务算法的备案指南
    在这里插入图片描述

通过这些学习内容,您不仅能够掌握大模型 AI 的基本技能,还能够深入理解其高级应用,从而在市场竞争中占据优势。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你无疑是AI领域的佼佼者。然而,即使你只能完成60-70%的内容,你也已经展现出了成为一名大模型AI大师的潜力。

最后,本文提供的完整版大模型 AI 学习资料已上传至 CSDN,您可以通过微信扫描下方的 CSDN 官方认证二维码免费领取【保证100%免费】在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值