Attention+:一种基于关注关系与多用户行为的图推荐算法

AttentionRank+是一种结合关注关系与多用户行为的图推荐算法,通过构建“用户-物品”和用户兴趣图,使用Random Walk进行相似度计算。算法考虑了用户之间的共同反馈和关注行为,通过调整不同信息源的权重来影响最终的推荐结果。此外,通过朴素贝叶斯分类器将用户分为受关注对象正影响和负影响的两类,优化推荐效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

刘梦娟, 王巍, 李杨曦,等. AttentionRank~+:一种基于关注关系与多用户行为的图推荐算法[J]. 计算机学报, 2017(3).

基于Random Walk的TSPR算法

该算法采用一阶Markov-chain计算游走 概 率。方法如下:分别从每个用户节点出发,在“用物品”二分图上进行一轮Random Walk;每当到达 一个节 点 时,需要判断是以概β继续向下游走,还是以1-β概率返回出发点重新游走;重复游走过程,直到二分图上用户与物品的游走概率(即相似度)收敛到稳定值;最终,根据用户对物品的游走概率生成每个用户的物品推荐列表。

算法设计

步骤:
算法流程图

构建“用户-物品”反馈图

“用 户 -物品”反馈图中,不仅设计了基于用户多种反馈类型的“用户 -物品”边,还增加了反映用户共同反馈紧密程度的“用户-用户”边,以提高具有共同兴趣的用户节点之间的游走概率。
用户-物品反馈图
假设系统中有N 种用户反馈类型,每种反馈类型发生的总次数记为(F1,F2,…,FN),首先按照式(2)计算每种反馈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值