刘梦娟, 王巍, 李杨曦,等. AttentionRank~+:一种基于关注关系与多用户行为的图推荐算法[J]. 计算机学报, 2017(3).
基于Random Walk的TSPR算法
该算法采用一阶Markov-chain计算游走 概 率。方法如下:分别从每个用户节点出发,在“用物品”二分图上进行一轮Random Walk;每当到达 一个节 点 时,需要判断是以概β继续向下游走,还是以1-β概率返回出发点重新游走;重复游走过程,直到二分图上用户与物品的游走概率(即相似度)收敛到稳定值;最终,根据用户对物品的游走概率生成每个用户的物品推荐列表。
算法设计
步骤:
构建“用户-物品”反馈图
“用 户 -物品”反馈图中,不仅设计了基于用户多种反馈类型的“用户 -物品”边,还增加了反映用户共同反馈紧密程度的“用户-用户”边,以提高具有共同兴趣的用户节点之间的游走概率。
假设系统中有N 种用户反馈类型,每种反馈类型发生的总次数记为(F1,F2,…,FN),首先按照式(2)计算每种反馈