算法训练 方格取数
时间限制:1.0s 内存限制:256.0MB
问题描述
设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。
某人从图的左上角的A 点(1,1)出发,可以向下行走,也可以向右走,直到到达右下角的B点(N,N)。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式
只需输出一个整数,表示2条路径上取得的最大的和。
样例输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
样例输出
67
设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。
某人从图的左上角的A 点(1,1)出发,可以向下行走,也可以向右走,直到到达右下角的B点(N,N)。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式
只需输出一个整数,表示2条路径上取得的最大的和。
样例输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
样例输出
67
动态规划题目,感觉动态规划按部就班,想法很巧妙,很神奇不过自己还是要对这个多加练习
既然题目说是只能往下走或者往右走,那么dp[x1][y1][x2][y2]表示逐步走的过程是根据两个人四个位置的来源来说的
动态规划的典型题目很神奇
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int map[12][12];
int dp[12][12][12][12];
int main()
{
int n;
scanf("%d",&n);
int x,y,v;
while(~scanf("%d %d %d",&x,&y,&v))
{
if(x == 0&&y == 0&&v == 0)
{
break;
}
map[x][y] = v;
}
int x1,x2,y1,y2;
for(int x1 = 1;x1 <= n;x1++)
{
for(int y1 = 1;y1 <= n;y1++)
{
for(int x2 = 1;x2 <= n;x2++)
{
for(int y2 = 1;y2 <= n;y2++)
{
if(x1 + y1 != x2 + y2)
{
continue ;
}
int temp = max(dp[x1-1][y1][x2-1][y2],dp[x1][y1-1][x2][y2-1]);
temp = max(temp,dp[x1-1][y1][x2][y2-1]);
temp = max(temp,dp[x1][y1-1][x2-1][y2]);
if(x1 == x2&&y1 == y2)
{
dp[x1][y1][x2][y2] = temp + map[x1][y1];
}
else
{
dp[x1][y1][x2][y2] = temp + map[x1][y1] + map[x2][y2];
}
}
}
}
}
printf("%d\n",dp[n][n][n][n]);
return 0;
}
算法训练 方格取数
时间限制:1.0s 内存限制:256.0MB
问题描述
设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。
某人从图的左上角的A 点(1,1)出发,可以向下行走,也可以向右走,直到到达右下角的B点(N,N)。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式
只需输出一个整数,表示2条路径上取得的最大的和。
样例输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
样例输出
67
设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。
某人从图的左上角的A 点(1,1)出发,可以向下行走,也可以向右走,直到到达右下角的B点(N,N)。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式
只需输出一个整数,表示2条路径上取得的最大的和。
样例输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
样例输出
67