【AIGC】多头注意力机制(MHA)的NumPy实现

在AI领域,Transformer模型及其核心组件——多头注意力机制(MHA)——已经成为一种强大的工具,本文将使用Python的NumPy库来实现这一机制。

什么是多头注意力机制?

MHA是Transformer架构中的关键组成部分,它允许模型在多个位置并行地捕捉输入序列的不同方面。与传统的注意力机制相比,MHA通过将输入数据分割成多个头,每个头学习不同的表示,从而增强了模型的表达能力。

MHA的关键优势

  1. 表示多样性:每个头可以学习输入的不同特征,增加了模型的表示能力。
  2. 并行处理:多头可以同时工作,提高了模型的计算效率。
  3. 灵活性和适应性:头的数量和大小可以根据不同的任务进行调整。

MHA的简化实现

1. 定义Softmax函数

首先,我们需要一个Softmax函数来计算注意力权重:

import numpy as np

def softmax(x, axis=-1):
    exps = np.exp(x - np.max(x, axis=axis, keepdims=True))
    return exps / exps.sum(axis=axis, keepdims=True)

2. 实现缩放点积注意力

接着,我们实现计算缩放点积注意力的函数:

def scaled_dot_product_attention(q, k, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值