在AI领域,Transformer模型及其核心组件——多头注意力机制(MHA)——已经成为一种强大的工具,本文将使用Python的NumPy库来实现这一机制。
什么是多头注意力机制?
MHA是Transformer架构中的关键组成部分,它允许模型在多个位置并行地捕捉输入序列的不同方面。与传统的注意力机制相比,MHA通过将输入数据分割成多个头,每个头学习不同的表示,从而增强了模型的表达能力。
MHA的关键优势
- 表示多样性:每个头可以学习输入的不同特征,增加了模型的表示能力。
- 并行处理:多头可以同时工作,提高了模型的计算效率。
- 灵活性和适应性:头的数量和大小可以根据不同的任务进行调整。
MHA的简化实现
1. 定义Softmax函数
首先,我们需要一个Softmax函数来计算注意力权重:
import numpy as np
def softmax(x, axis=-1):
exps = np.exp(x - np.max(x, axis=axis, keepdims=True))
return exps / exps.sum(axis=axis, keepdims=True)
2. 实现缩放点积注意力
接着,我们实现计算缩放点积注意力的函数:
def scaled_dot_product_attention(q, k,