
agent
文章平均质量分 94
余俊晖
余俊晖,NLP炼丹师,目前专注自然语言处理领域研究。曾获得国内外自然语言处理算法竞赛TOP奖项近二十项。在国内外SCI、顶会等发表多篇论文。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LLM+KG+Agent的Text2SPARQL多语言KBQA智能体框架—mKGQAgent
前面笔者介绍了《》及《》,一般的Text2Sparql/Text2SQL技术路线图如下,目标是奖自然语言转话为可查询的SQL语句。目前基于KG+LLM+Agent的KBQA方案,在多语言场景未得到充分探索。下面来看一个智能体框架-mKGQAgent,通过模拟人类推理过程将自然语言问题转化为SPARQL查询。原创 2025-07-31 18:19:33 · 991 阅读 · 0 评论 -
Agent上下文工程:如何构建可靠的AI Agent
manus:Peak在 Manus 项目伊始,我和团队就面临一个关键抉择:是利用开源基础模型训练一个端到端的智能体,还是依托前沿模型的上下文学习能力,在其之上构建智能体?在我投身 NLP 的第一个十年里,我们并没有这种奢侈的选择。遥想当年 BERT 问世(没错,那已是七年前),模型必须先经过微调——还要评估——才能迁移到新任务。每次迭代往往耗时数周,尽管那时的模型体积与今日的 LLMs 相比微不足道。对于快速迭代的应用,尤其是 PMF 之前的阶段,如此缓慢的反馈循环几乎是致命的。原创 2025-07-27 14:40:30 · 1013 阅读 · 0 评论 -
使用多Agent进行海报生成的技术方案及评估套件-P2P、paper2poster
最近字节、滑铁卢大学相关团队同时放出了他们使用Agent进行海报生成的技术方案,和,传统方案如类似ppt生成等思路,基本上采用固定的模版,提取相关的关键元素进行模版填充,因此,海报生成的质量完全依赖于规则模版的丰富程度。下面来看一下这两个团队使用Agent进行海报生成的技术思路,覆盖多种技术链路,如:文档智能解析、LLM、布局生成、Agent等。比如有趣,下面来看看这两个技术方案,供参考。学术海报在科学交流中起着至关重要的作用,需要在有限的页面上压缩长篇幅的多模态文档。原创 2025-05-28 16:25:35 · 1285 阅读 · 0 评论 -
【RAG】RAG范式演进及Agentic-RAG总结综述
RAG的核心思想是通过实时数据检索弥补这一缺陷——在生成答案前,系统先从外部数据源(如数据库、API或互联网)动态检索相关上下文,再结合LLM的知识生成更精准、实时的响应。。检索器(Retriever):从外部数据源(如向量数据库、知识图谱或网页)中搜索与查询相关的信息。相关技术:如BM25关键词匹配、密集向量搜索等。增强器(Augmenter):对检索结果进行筛选、排序和整合,提取最相关的片段。相关技术:上下文重排序、多跳检索。原创 2025-02-06 14:25:37 · 1352 阅读 · 0 评论