引言
本着“凡我不能创造的,我就不能理解”的思想,本系列文章会基于纯Python以及NumPy从零创建自己的深度学习框架,该框架类似PyTorch能实现自动求导。
💡系列文章完整目录: 👉点此👈
要深入理解深度学习,从零开始创建的经验非常重要,从自己可以理解的角度出发,尽量不适用外部框架的前提下,实现我们想要的模型。本系列文章的宗旨就是通过这样的过程,让大家切实掌握深度学习底层实现,而不是仅做一个调包侠。
我们前面介绍的简单RNN存在一些问题,即很难保持远离当前位置的信息和梯度消失的问题。
LSTM
LSTM被设计来解决上面的问题。通过使网络学到忘记不需要的信息,并记住将来作出决定所需要的信息,以明确地管理上下文信息。
LSTM将上下文管理问题分成两个子问题:从上下文中移除不再需要的信息,以及增加未来决定更可能需要的信息。
架构
解决这两个问题的关键是学习如何管理这个上下文,而不是将策略硬编码到架构中。LSTM首先