从零实现深度学习框架——LSTM从理论到实战【理论】

本文旨在从零构建基于Python和NumPy的深度学习框架,以加深对LSTM的理解。通过介绍LSTM的遗忘门、输入门、输出门的工作原理,解释其如何解决RNN的问题。LSTM通过门控机制学习管理上下文信息,从而有效防止信息丢失和梯度消失。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

本着“凡我不能创造的,我就不能理解”的思想,本系列文章会基于纯Python以及NumPy从零创建自己的深度学习框架,该框架类似PyTorch能实现自动求导。
💡系列文章完整目录: 👉点此👈
要深入理解深度学习,从零开始创建的经验非常重要,从自己可以理解的角度出发,尽量不适用外部框架的前提下,实现我们想要的模型。本系列文章的宗旨就是通过这样的过程,让大家切实掌握深度学习底层实现,而不是仅做一个调包侠。

我们前面介绍的简单RNN存在一些问题,即很难保持远离当前位置的信息和梯度消失的问题。

LSTM

LSTM被设计来解决上面的问题。通过使网络学到忘记不需要的信息,并记住将来作出决定所需要的信息,以明确地管理上下文信息。

LSTM将上下文管理问题分成两个子问题:从上下文中移除不再需要的信息,以及增加未来决定更可能需要的信息。

架构

在这里插入图片描述

解决这两个问题的关键是学习如何管理这个上下文,而不是将策略硬编码到架构中。LSTM首先

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值