[论文笔记]Prompt Tuning

本文介绍了提示微调(prompt tuning)方法,作为简化版的prefix tuning,仅调整输入前的软提示token,保留预训练模型参数。研究发现,随着模型规模增大,提示微调可与模型微调效果相当,且在领域转移问题上表现出更好的泛化能力。此外,还探讨了提示长度、初始化、预训练目标等因素对其性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

今天带来第三篇大模型微调论文笔记The Power of Scale for Parameter-Efficient Prompt Tuning

作者提出了prompt tuning(提示微调),一种简单高效地微调方法。可以看成是prefix tuning的简化版。

总体介绍

最近的研究表明,提示设计(prompt design)在通过文本提示调节冻结的GPT-3模型行为方面表现出惊人的有效性。提示通常由一些任务描述和/或几个典型示例组成。然而,基于提示的方法有几个关键的缺点。任务描述是容易出错的,且需要人类介入,提示的有效性受到能够喂给模型输入长度的限制。

prefix-tuning在生成任务上显示了很好的效果,固定模型的参数然后通过反向传播仅调整添加到编码器每层激活值和输入层之前的prefix。

在本篇工作中,作者提出了prompt tuning作为适配语言模型的进一步简化。具体是,固定整个预训练模型的参数仅为每个任务添加额外 k k

### Prompt Tuning 的概念及其在大模型中的应用 Prompt tuning 是一种轻量级的大规模语言模型微调方法,它通过引入可学习的连续向量(称为 prompts 或 prefix vectors),而不是更新整个模型权重来适应新任务。这种方法显著减少了参数数量,同时保持了良好的性能表现[^1]。 --- #### **Prompt Tuning 的核心原理** Prompt tuning 的基本思想是在输入序列前附加一组可训练的 token embeddings(prompts)。这些 prompts 被视为额外的上下文信息,指导预训练模型更好地理解和生成目标输出。相比于传统的全参数微调,prompt tuning 只需优化少量新增加的参数,因此具有更高的效率和更低的计算成本[^3]。 ```python import torch from transformers import BertModel, BertTokenizer class PromptTuningModel(torch.nn.Module): def __init__(self, model_name, num_prompts=10): super(PromptTuningModel, self).__init__() self.bert = BertModel.from_pretrained(model_name) self.tokenizer = BertTokenizer.from_pretrained(model_name) self.prompts = torch.nn.Parameter(torch.randn(num_prompts, self.bert.config.hidden_size)) def forward(self, input_ids, attention_mask=None): batch_size = input_ids.shape[0] prompt_embeddings = self.prompts.unsqueeze(0).expand(batch_size, -1, -1) inputs_embeds = self.bert.embeddings(input_ids=input_ids) combined_inputs = torch.cat([prompt_embeddings, inputs_embeds], dim=1) if attention_mask is not None: extended_attention_mask = torch.cat( [torch.ones((batch_size, prompt_embeddings.size(1)), dtype=torch.long)], dim=-1 ) attention_mask = torch.cat([extended_attention_mask, attention_mask], dim=-1) outputs = self.bert(inputs_embeds=combined_inputs, attention_mask=attention_mask) return outputs.last_hidden_state[:, :len(prompt_embeddings)] ``` 上述代码展示了一个简单的 prompt tuning 实现框架,其中 `num_prompts` 表示要插入的提示长度,而 `self.prompts` 则是需要训练的部分。 --- #### **Prompt Tuning 在美团业务场景的应用** ##### **1. 商品描述优化** 在电商领域,商品描述通常需要简洁明了且吸引消费者注意。通过 prompt tuning 方法,可以将原始的商品标题或其他元数据作为条件输入,并生成高质量的营销文案。例如,给定一段关于食品成分的文字说明,经过适当设计的 prompts,可以让模型专注于提取关键卖点并重新表述为更易懂的形式[^3]。 --- ##### **2. 客服对话系统改进** 对于在线订餐平台而言,高效的客户支持至关重要。采用基于 prompt tuning 构建的服务机器人不仅可以降低运营成本,还能提升响应速度和服务质量。具体来说,当接收到用户的提问时,先由固定的 templates 提供初步意图识别线索,随后依靠 finetuned LLM 进一步细化答案内容[^5]。 --- ##### **3. 推荐系统中的冷启动问题缓解** 面对新人或新品缺乏足够历史交互记录的情况,传统协同过滤算法往往显得乏力。此时如果结合 NLP 技术,则有可能从文本角度挖掘潜在关联性。比如利用带有特定 domain knowledge encoded into its parameters via prompting mechanism 的 transformer architecture 来预测某类用户可能会喜欢哪一类餐厅风格[^4]。 --- #### **总结与展望** 尽管目前仍处于发展阶段,但随着研究深入和技术成熟度不断提高,相信 future work will continue exploring how to better leverage these techniques across diverse real-world applications including but not limited those mentioned above within Meituan ecosystem. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值