jupyter切换python内核

本文介绍了如何在conda环境中创建并激活虚拟环境evn1,然后安装并配置jupyter Notebook以使用该环境的tensorflow-gpu版本。通过检查jupyter的Kernel和执行`sys.executable`来确认内核设置。当发现只能训练少量数据时,作者意识到需要利用GPU加速,因此进行了环境切换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境:我在conda 环境中新建了虚拟环境 evn1,这个里面有tensorflow-gpu版本的。

目标:将jupyter的Kernel切换成conda中的evn1

我们有两种方式查看我们的jupyter当前使用的Kernel

方法1:Kernel-ChangeKernel

方法2:直接在我们的jupyter里面导入sys模块,并且执行sys.executable,查看当前使用的python内核

如果说我们只有一个默认的python的Ker的话,那说明,我们evn1的内核还没有安装,此时并不能切换

先安装Kernel

  • conda info -e
  • activate evn1
  • pip install ipykernel -i https://pypi.douban.com/simple

把evn1加入到jupyter/kernels里面

  • python -m ipykernel install --user --name evn1 --display-name "Python [conda env:evn1]"

最后重新打开jupyter,按照第一步那边查看jupyter内核的地方切换我们想要使用的内核

说一些题外话:

由于我在学习使用tensorflow做MNIST数据集的训练的时候,明明是有60000个数据,但是每次训练的时候只能够训练1875条记录,我想这可能是因为cpu每次读取的数据有限

所以我感觉还是用gpu版本的tensorflow来训练,所以才想到要切换我的tensorflow,大意了大意了。

是不是很奈斯!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值