[Huffman树] 合并果子(哈夫曼树模型+贪心)

本文介绍了哈夫曼树的构造过程,通过贪心策略每次合并最小两个节点,构建哈夫曼树。文章详细阐述了合并最小节点的局部最优解性质,并通过反证法证明这一策略可得出全局最优解。同时,提供了C++代码实现合并过程。哈夫曼树在解决数据压缩、路径最小化等问题中广泛应用,是笔试面试的常见考点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

经典的哈夫曼树模型。

关于哈夫曼树推荐大佬博文,简单了解即可。

1. 构建Huffman树+贪心

148. 合并果子

在这里插入图片描述

贪心思路:

  • 每次选择最小的两个点合并,采用小根堆存储
  • 这些石子会构成一颗哈夫曼树
    在这里插入图片描述

证明:

  • 证明1: 权值最小的两个点,在哈夫曼树中的深度一定最深,且可以互为兄弟节点,即可以优先合并,且代价最小
    • 反证法,假设最小两点深度不是最深,设点 a、f 是最小的两个点。当交换点 bf 后,影响到最终结果会从 3b+2f+C 变为 3f+2b+C,因为 f<b,所以结果变小了,即交换后整体合并代价变小。即有:合并最小的两个点是局部最优解
  • 证明2: 一定可以通过局部最优解得到全局最优解
    • a,b 是两个最小的果子,设函数 f(x) 表示一棵大小为 x 的哈夫曼树的代价。F(x) 表示数大小为 x 的最小代价由局部最优解得:f(n) = f(n-1) + a + b。因为不管是哪一种方案,第一步总是要合并 a+b,因此先不考虑a+b,只考虑 f(n-1),于是问题变为求 f(n-1) 的最优解,于是可以再调用局部最优解的方案,以此类推直到 n=1。故,证得:可以通过局部最优解的方式得到全局最优解
      在这里插入图片描述

思路简单,证明困难,这个证明真的蛮抽象的,我感觉自己说都没说明白。

哈夫曼问题见的真的蛮多的,笔试中经常遇见求 WPL、构建哈夫曼树、求哈夫曼编码等问题…但是一直没总结()…

代码:

#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

int main() {
    int n;
    cin >> n;
     priority_queue<int, vector<int>, greater<int>> heap;
     while (n --) {
         int a;
         cin >> a;
         heap.push(a);
     }
     
     int res = 0;
     while (heap.size() > 1) {
         int a = heap.top(); heap.pop();
         int b = heap.top(); heap.pop();
         res += a + b;
         heap.push(a + b);
     }
     cout << res << endl;
     
     return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值